Magnetically Levitated Trains

Question:
Suppose you have a long bar magnet with a north pole at one end and a south pole at the other. If you break it in half, will the two new ends:

1. Attract
2. Repel
3. Neither

Observations About Maglev Trains
- Ordinary trains rattle on their rails
- Magnetic suspension would be nice and soft
- Repelling magnets tend to fall off one another
- Attracting magnets tend to leap at each other

Magnetic Poles
- Two types: north & south
- Like poles repel, opposites attract
 - Forces consist of a matched pair
 - Forces increase with decreasing separation
- Analogous to electric charges EXCEPT:
 - No isolated magnetic poles ever found!
 - Net pole on an object is always zero!

Question:
Suppose you have a long bar magnet with a north pole at one end and a south pole at the other. If you break it in half, will the two new ends:

1. Attract
2. Repel
3. Neither

Magnetic Fields
- A magnetic field is a structure in space that pushes on magnetic pole
- The magnitude of the field is proportional to the magnitude of the force on a test pole
- The direction of the field is the direction of the force on a north test pole
Electromagnetism 1

- Electric fields
 - Push only on electric charges
 - Produced by electric charges
 - Can be produced by changing magnetism
- Magnetic fields
 - Push only on magnetic poles
 - Produced by magnetic poles
 - Can be produced by changing electricity

Electromagnetism 2

- Magnetism created by
 - Poles (but isolated poles don’t seem to exist)
 - Moving electric charges
 - Changing electric fields
- Electricity created by
 - Charges
 - Moving magnetic poles
 - Changing magnetic fields

Current

- Current measures the electric charge passing through a region per unit of time
- Current is measured in coulombs/second or amperes (amps)
- Electric fields cause currents to flow
- Currents are magnetic

Equilibrium

- Stable equilibrium
 - Zero net force at equilibrium
 - Accelerates toward equilibrium when disturbed
- Unstable equilibrium
 - Zero net force at equilibrium
 - Accelerates away from equilibrium when disturbed
- Neutral equilibrium
 - Zero net force at or near equilibrium

Levitation & Stability

- Unstable Levitation Schemes
 - Static permanent magnets
- Stable Levitation Schemes
 - Permanent magnets and contact
 - Dynamic stabilization with permanent magnets
 - Electromagnets and Feedback

Electromagnetic Induction

- Changing magnetic field \rightarrow electric field
- Electric field in conductor \rightarrow current
- Current \rightarrow magnetic field
- Induced magnetic field opposes the original magnetic field change (Lenz’s law)
Levitation & Stability

- Unstable Levitation Schemes
 - Static permanent magnets
- Stable Levitation Schemes
 - Permanent magnets and contact
 - Dynamic stabilization with permanent magnets
 - Electromagnets and Feedback
 - Alternating Current Levitation

Alternating Current Levitation

- Electromagnets and Feedback
- Alternating Current Levitation

Levitation & Stability

- Unstable Levitation Schemes
 - Static permanent magnets
- Stable Levitation Schemes
 - Permanent magnets and contact
 - Dynamic stabilization with permanent magnets
 - Electromagnets and Feedback
 - Alternating Current Levitation
 - Electrodynamical Levitation

Electrodynamical Levitation

- Electromagnets and Feedback
- Alternating Current Levitation
- Electrodynamical Levitation