How Everything Works
How Everything Works How Everything Works

Wheels Home Page
10 Most Recent Questions and Answers (out of 36)

1514. What packing material protects best? When we drop an egg wrapped in various packaging materials, we know the force that gravity exerts on the egg but how do we know the force of the impact? — DL, Springboro, Ohio
I like to view problems like this one in terms of momentum: when it reaches the pavement, a falling egg has a large amount of downward momentum and it must get rid of that downward momentum gracefully enough that it doesn't break. The whole issue in protecting the egg is in extracting that momentum gracefully.

Momentum is a conserved physical quantity, meaning that it cannot be created or destroyed. It can only be passed from one object to the other. When you let go of the packaged egg and it begins to fall, the downward momentum that gravity transfers into the egg begins to accumulate in the egg. Before you let go, your hand was removing the egg's downward momentum as fast as gravity was adding it, but now the egg is on its own!

Because momentum is equal to an object's mass times its velocity, the accumulating downward momentum in the egg is reflected in its increasing downward speed. With each passing second, the egg receives another dose of downward momentum from the earth. By the time the egg reaches the pavement, it's moving downward fast and has a substantial amount of downward momentum to get rid of. Incidentally, the earth, which has given up this downward momentum, experiences an opposite response—it has acquired an equal amount of upward momentum. However, the earth has such a huge mass that there is no noticeable increase in its upward speed.

To stop, the egg must transfer all of its downward momentum into something else, such as the earth. It can transfer its momentum into the earth by exerting a force on the ground for a certain amount of time. A transfer of momentum, known as an impulse, is the product of a force times a time. To get rid of its momentum, the egg can exert a large force on the ground for a short time or a small force for a long time, or anything in between. If you let it hit the pavement unprotected, the egg will employ a large force for a short time and that will be bad for the egg. After all, the pavement will push back on the egg with an equally strong but oppositely directed force and punch a hole in the egg.

To make the transfer of momentum graceful enough to leave the egg intact, the protective package must prolong the momentum transfer. The longer it takes for the egg to get rid of its downward momentum, the smaller the forces between the egg and the slowing materials. That's why landing on a soft surface is a good start: it prolongs the momentum transfer and thereby reduces the peak force on the egg.

But there is also the issue of distributing the slowing forces uniformly on the egg. Even a small force can break the egg if it's exerted only on one tiny spot of the egg. So spreading out the force is important. Probably the best way of distributing the slowing force would be to float the egg in the middle of a fluid that has the same average density as the egg. But various foamy or springy materials will distribute the forces nearly as well.

In summary, (1) you want to bring the egg to a stop over as long as period of time as possible so as to prolong the transfer of momentum and reduce the slowing forces and (2) you want to involve the whole bottom surface of the egg in this transfer of momentum so that the slowing forces are exerted uniformly on the egg's bottom surface. As for the actual impact force on the egg, you can determine this by dividing the egg's momentum just before impact (its downward speed times its mass) by the time over which the egg gets rid of its momentum.

1512. Why are physicists so skeptical about peoples' claims to have invented motors that provide mechanical power without consuming electric power or generators that produce electric power without consuming mechanical power from the systems that turns them? — LB (Yes, I'm asking myself this question)
While it may seem as though there is some grand conspiracy among physicists to deny validation to those inventors, nothing could be farther from the truth. Physicists generally maintain a healthy skepticism about whatever they hear and are much less susceptible to dogmatic conservativism than one might think. However, physicists think long and deep about the laws that govern the universe, especially about their simplicity and self-consistency. In particular, they learn how even the slightest disagreement between a particular law and the observed behavior of the universe indicates either a problem with that law (typically an oversimplification, but occasionally a complete misunderstanding) or a failure in the observation. The law of energy conservation is a case in point: if it actually failed to work perfect even one time, it would cease to be a meaningful law. The implications for our understanding of the universe would be enormous. Physicists have looked for over a century for a failure of energy conservation and have never found one; not a single one. (Note: relativistic energy conservation involves mass as well as energy, but that doesn't change the present story.)

The laws of both energy conservation and thermodynamics are essentially mathematical laws—they depend relatively little on the specific details of our universe. Just about the only specific detail that's important is time-translation symmetry: as far as we can tell, physics doesn't change with time—physics today is the same as it was yesterday and as it will be tomorrow. That observation leads, amazingly enough, to energy conservation: energy cannot be created or destroy; it can only change forms or be transferred between objects. Together with statistical principals, we can derive thermodynamics without any further reference to the universe itself. And having developed energy conservation and the laws of thermodynamics, the game is over for free-energy motors and generators. They just can't work. It's not a matter of looking for one special arrangement that works among millions that don't. There are exactly zero arrangements that work.

It's not a matter of my bias, unless you consider my belief that 2 plus 2 equals 4 to be some sort of bias. You can look all you like for a 2 that when added to another 2 gives you a 5, but I don't expect you to succeed.

About once every month or two, someone contacts me with a new motor that turns for free or a generator that creates power out of nowhere. The pattern always repeats: I send them the sad news that their invention will not work and they respond angrily that I am not listening, that I am biased, and that I am part of the conspiracy. Oh well. There isn't much else I can do. I suppose I could examine each proposal individually at length to find the flaw, but I just don't have the time. I'm a volunteer here and this is time away from my family.

Instead, I suggest that any inventor who believes he or she has a free-energy device build that device and demonstrate it openly for the physics community. Take it to an American Physical Society conference and present it there. Let everyone in the audience examine it closely. Since anyone can join the APS and any APS member can talk at any major APS conference, there is plenty of opportunity. If someone succeeds in convincing the physics community that they have a true free-energy machine, more power to them (no pun intended). But given the absence of any observed failure of time-translation symmetry, and therefore the steadfast endurance of energy conservation laws, I don't expect any successful devices.

1511. My 10-year old son understands that body temperature is related to the speeds/kinetic energies of the molecules inside you, but does friction play a role as well? — MR
You're both right about temperature being associated with kinetic energy in molecules: the more kinetic energy each molecule has, the hotter the substance (e.g. a person) is. But not all kinetic energy "counts" in establishing temperature. Only the disordered kinetic energy, the tiny chucks of kinetic energy that belong to individual particles in a material contributes to that material's temperature. Ordered kinetic energy, such as the energy in a whole person who's running, is not involved in temperature. Whether an ice cube is sitting still on a table or flying through the air makes no difference to its temperature. It's still quite cold.

Friction's role with respect to temperature is in raising that temperature. Friction is a great disorderer. If a person running down the track falls and skids along the ground, friction will turn that person's ordered kinetic energy into disordered kinetic energy and the person will get slightly hotter. No energy was created or destroyed in the fall and skid, but lots of formerly orderly kinetic energy became disordered kinetic energy—what I often call "thermal kinetic energy."

The overall story is naturally a bit more complicated, but the basic idea here is correct. Once energy is in the form of thermal kinetic energy, it's stuck... like a glass vase that has been dropped and shattered into countless pieces, thermal kinetic energy can't be entirely reconstituted into orderly kinetic energy. Once energy has been distributed to all the individual molecules and atoms, getting them all to return their chunks of thermal kinetic energy is hopeless. Friction, even at the molecular level, isn't important at this point because the energy has already been fragmented and the most that any type of friction can do is pass that fragmented energy about between particles. So friction creates thermal kinetic energy (out of ordered energies of various types)... in effect, it makes things hot. It doesn't keep them hot; they do that all by themselves.

1509. About 18 months ago, I saw an episode on "Current Affairs," in Australia, in which this dude made a "free electricity" machine, using magnets, fixed and non fixed-on a spinning wheel. While I know that I should be skeptical, I can't help thinking "what if?" Have scientists carefully tested this stuff to see for sure that it does or does work? - P, Australia
Not surprisingly, no "free electricity" machines are ever released to real scientists for testing. That's because the results of such testing are certain: those machines simply can't work for very fundamental and incontrovertible reasons.

Like so many "scientific" conmen, the purveyors of this particular scam claim to be victims of a hostile scientific establishment, which refuses to accept their brilliant discoveries. They typically attack the deepest and most central tenets of science and claim that a conspiracy is perpetuating belief on those tenets. Their refusal to submit their work to scientific peer review is supposedly based on a fear that such review will be biased and subjective, controlled by the conspiracy.

The sad reality is that the "scientific establishment" is more than willing to examine the claims, but those claims won't survive the process of inspection. In some cases, the authors of the claims are truly self-deluded and are guilty only of pride and ignorance. But in other cases, the authors are real conmen who are out to make a buck at public expense. They should be run out of town on a rail. >

Click here for more information about the "free electricity" hoax, sent in by readers of this site.

1452. I recently read a full-page ad for FREE ELECTRICITY from a company called United Services Company of America. Their Website is at I walked through their site and viewed some of their videos "demonstrating" clear violations of the well-known and well-founded Laws of Thermodynamics, and listened to the description of the new Fourth Law of Motion (following Newton's other well known three). Are these people the same who were denied patent approval for a Perpetual Motion Machine? Have any reputable independent test labs reviewed their products under controlled conditions? Do they publish, even at a price, the fundamental mathematical and physical processes that allow for the claims that seem to be shown? I realize you're not a "debunker", but maybe you can shed some light on this. They have scheduled dozens of seminars across the country at considerable cost (and most likely considerable profit to them), and taken out full-page ads in national newspapers. The speakers do not comment on their academic training or experience, but tend to speak of hidden conspiracies from the power industry to stop their proliferation of free power. — DH
What a great find! This site is filled with pseudo-science at its best. I don't know the history or training of these people, but it's pure garbage. They use the words of science but without any meaningful content. Just as putting on a crown doesn't make you a king, using phrases like "action and reaction" and "Newton's third law" doesn't mean that you are discussing real science.

I watched the video on the "Counter Rotation Device" and found the discussion of "Newton's Fourth Law of Motion" quite amusing. The speaker claims that this fourth law was discovered about 30 years ago by a person now at their research lab. It is based on Newton's third law, which the speaker simplifies to "for every action there is an equal and opposite reaction." In a nutshell, his fourth law claims that you can take the reaction caused by a particular action and apply it to the action in the same direction—action causes reaction which causes more action which causes more reaction and so on. Pretty soon you have so much action and reaction that anything becomes possible. The video goes on to show devices that yield more power than they consume and that can easily become net sources of energy—by using part of the output energy from one of these energy multiplying devices to power that device, you can create endless energy from nothing at all.

Sadly enough, it's all just nonsense. Newton's third law is not as flexible as the speaker supposes and this endless feedback process in which reaction is used as action to produce more reaction is ridiculous. A more accurate version of Newton's third law is: "Whenever one object pushes on a second object, the second object pushes back on the first object equally hard but in the opposite direction". Thus when you push on the handle of a water pump, that handle pushes back on you with an equal but oppositely directed force. The speaker's claim is that there is a way to use the handle's push on you as part of your push on the handle so that, with your help, the handle essentially pushes itself through action and reaction. You can then pump water almost without effort. Sorry, this is just nonsense. It's mostly just playing with the words action and reaction in their common language form: if you scare me, I react by jumping. That action and reaction has nothing to do with physics.

The speaker uses at least three clever techniques to make his claims more compelling and palatable. First, he refers frequently to a power-company conspiracy that is out to destroy his company and its products. Conspiracy theories are so popular these days that having a conspiracy against you makes you more believable. Second, he describes the fellow who discovered the fourth law of motion as a basement inventor who has taken on the rigid scientific establishment. Ordinary people love to see pompous, highly educated academics brought low by other ordinary people; it's kind of a team spirit issue. And third, he makes casual use of technical looking equipment and jargon, as though he is completely at ease in the world of advanced technology. Movies have made it easier to trust characters like Doc Brown from "Back to the Future" than to trust real scientists.

In fact, there is no power-company conspiracy because there is no free electricity. The proof is in the pudding: if these guys really could make energy from nothing, they'd be doing it every day and making a fortune. They would be the power companies. If they were interested in public welfare rather than money, they'd have given their techniques away already. If they were interested in proving the scientific establishment wrong, they'd have accepted challenges by scientific organization and demonstrated their devices in controlled situations (where they can't cheat). The fact is, they're just frauds and of no more interest to the power companies than snake oil salespeople are to doctors. No decent people want to see others defrauded of money, property, or health, but the free electricity people present no real threat to the power companies.

The popular notion that an ordinary person is likely to upset established science is an unfortunate product of the anti-intellectual climate of our present world. Becoming a competent scientist is generally hard work and requires dedication, time, and an enormous amount of serious thinking. Physics is hard, even for most physicists. The laws governing the universe are slowly being exposed but it has taken very smart, very hardworking people almost half a millennium to get to the current state of understanding. Each new step requires enormous effort and a detailed understanding of a good part of the physics that is already known. Still, there is a common myth that some clever and lucky individual with essentially no training or knowledge of what has been discovered before will make some monumental breakthrough. The movies are filled with such events. Unfortunately, it won't happen. In new or immature fields or subfields, it is possible for an essentially untrained or self-trained genius to jump in and discover something important. Galileo and Newton probably fit this category in physics and Galois and Ramanujan probably fit it in mathematics. But most of physics is now so mature that broad new discoveries are rare, and accessible only to those with extremely good understandings of what is already known. A basement tinkerer hasn't got a prayer.

Finally, real scientists don't always walk around in white lab coats looking serious, ridiculing the less educated, and trying to figure out how to trick the government into funding yet another silly, fraudulent, or unethical research project. In fact, most scientists wear practical clothes, have considerable humor, enjoy speaking with ordinary folk about their science, and conduct that science because they love and believe in it rather than as a means to some diabolic end. These scientists use the words of science in their conversations because it is the appropriate language for their work and there is meaning in each word and each sentence. The gibberish spoken by "scientists" in movies is often offensive to scientists in the same way that immigrant groups find it offensive when people mock their native languages.

I don't know about any patent history for the free electricity organization but everyone should be aware that not all patented items actually do what they're supposed to. In principle, the U.S. Patent Office only awards a patent when it determines that a concept has not been patented previously, is not already known, is not obvious, and is useful. The utility requirement should eliminate items that don't actually work. One of my readers, a patent attorney, reports that he regularly invokes the utility regulation while escorting the "inventors" of impossible devices such as "free electricity" to the door. They consider him part of the conspiracy against them, but he is doing us all a service by keeping foolishness out of the patent system. However, proving that something doesn't work often takes time and money, so sometimes nonfunctional items get patented. Thus a patent isn't always a guarantee of efficacy. Patented nonsense is exactly that: nonsense.

Finally, how do I know that Free Electricity is really not possible? Couldn't I have missed something somewhere in the details? No. The impossibility of this scheme is rooted in the very groundwork of physics; at the deepest level where there is no possibility of mistake. For the counter rotation device to generate 15 kilowatts of electricity out of nothing, it would have to be a net source of energy—the device would be creating energy from nothing. That process would violate the conservation of energy, whereby energy cannot be created or destroyed but can only be transferred from one object to another or converted from one form to another. Recognizing that our universe is relativistic (it obeys the laws of special relativity), the actual conserved quantity is mass/energy, but the concept is the same: you can't make mass/energy from nothing.

The origin of this conservation law lies in a mathematical theorem noted first by C. G. J. Jacobi and fully developed by Emmy Noether, that each symmetry in the laws of physics gives rise to a conserved quantity. The fact that a translation in space—shifting yourself from one place to another—does not change the laws of physics gives rise to a conserved quantity: momentum. The fact that a rotation—changing the direction in which you are facing—does not change the laws of physics gives rise to another conserved quantity: angular momentum. And the fact that waiting a few minutes—changing the time at which you are—does not change the laws of physics gives rise to a third conserved quantity: energy. The conservation of energy is thus intimately connected with the fact that the laws of physics are the same today as they were yesterday and as they will be tomorrow.

Scientists have been looking for over a century for any changes in the laws of physics with translations and rotations in space and with movement through time, and have never found any evidence for such changes. Thus momentum, angular momentum, and energy are strictly conserved in our universe. For the counter rotation device to create energy from nothing, all of physics would have to be thrown in the trashcan. The upset would be almost as severe as discovering that 1+1 = 3. Furthermore, a universe in which physics was time-dependent and energy was not conserved would be a dangerous place. Free electricity devices would become the weapons of the future—bombs and missiles that released energy from nothing. Moreover, as the free electricity devices produced energy from nothing, the mass/energy of the earth would increase and thus its gravitational field would also increase. Eventually, the gravity would become strong enough to cause gravitational collapse and the earth would become a black hole. Fortunately, this is all just science fiction because free electricity isn't real.

For more information about the "free electricity" hoax, sent in by readers of this site, touch here.

1346. How does one "pull up their legs"? Wouldn't you have to jump in some way or another?
It is possible to simply pull up your legs. When you do that, you reduce the downward force your feet exert on the ground and the ground responds by pushing upward on your feet less strongly. With less upward force to support you, you begin to fall.

1342. Is hydroplaning a form of sliding friction?
Not exactly. Sliding friction refers to the situation in which two surfaces slide across one another while touching. In hydroplaning, the two surfaces are sliding across one another, but they aren't touching. Instead, they're separated by a thin layer of trapped water. While hydroplaning still converts mechanical energy into thermal energy, just as sliding friction does, the lubricating effect of the water dramatically reduces the energy conversion. That's why you can hydroplane for such a long distance on the highway; there is almost no slowing force at all.

Dan Barker, one of my readers, informed me of a NASA study showing that there is a minimum speed at which a tire will begin to hydroplane and that that speed depends on the square root of the tire pressure. Higher tire pressure tends to expel the water layer and prevent hydroplaning, while lower tire pressure allows the water layer to remain in place when the vehicle is traveling fast enough. As Dan notes, a large truck tire is typically inflated to 100 PSI and resists hydroplaning at speed of up to about 100 mph. But a passanger car tire has a much lower pressure of about 32 PSI and can hydroplane at speeds somewhat under 60 mph. That's why you have to be careful driving on waterlogged pavement at highway speeds and why highway builders carefully slope their surfaces to shed rain water quickly.

1341. If you walk up 10 steps, one by one, do you exert the same amount of energy if you walk up the same set of 10 steps two by two? How are energy and effort related, or are they?
Ideally, it doesn't matter how many steps you take with each step—the work you do in lifting yourself up a staircase depends only on your starting height and your ending height (assuming that you don't accelerate or decelerate in the overall process and thus change your kinetic energy, too). But there are inefficiencies in your walking process that lead you to waste energy as heat in your own body. So the energy you convert from food energy to gravitational potential energy in climbing the stairs is fixed, but the energy you use in carrying out this procedure depends on how you do it. The extra energy you use mostly ends up as thermal energy, but some may end up as sound or chemical changes in the staircase, etc.

1340. If ball bearings create no friction, why do bearings have bearing grease as an essential ingredient?
Actually, some bearings are dry (no grease or oil) and still last a very long time. The problem is that the idea touch-and-release behavior is hard to achieve in a bearing. The balls or rollers actually slip a tiny bit as they rotate and they may rub against the sides or retainers in the bearing. This rubbing produces wear as well as wasting energy. To reduce this wear and sliding friction, most bearings are lubricated.

1339. How do anti-lock brake systems work?
If you brake your car too rapidly, the force of static friction between the wheels and the ground will become so large that it will exceed its limit and the wheels will begin to skid across the ground. Once skidding occurs, the stopping force becomes sliding friction instead of static friction. The sliding friction force is generally weaker than the maximum static friction force, so the stopping rate drops. But more importantly, you lose steering when the wheels skid. An anti-lock braking system senses when the wheels suddenly stop turning during braking and briefly release the brakes. The wheel can then turn again and static friction can reappear between the wheel and the ground.
The Wheels Home Page
The Complete Collection of Questions about Wheels (4 pages, from oldest to newest):
1 2 3 4 

Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy