Fluorescent Lamps
Page 1 of 8 (78 Questions and Answers)
Click Here to Return to HowEverythingWork.org

MLA Citation: Bloomfield, Louis A. "Fluorescent Lamps" How Everything Works 30 Jul 2015. Page 1 of 8. 30 Jul 2015 <http://www.howeverythingworks.org/prints.php?topic=fluorescent_lamps&page=1>.
369. Are flood lights incandescent or fluorescent? Why are they so bright?
Most modern commercial and industrial floodlights are fluorescent lamps. Fluorescent lamps are so much more energy efficient than incandescent lamps that they quickly pay for their higher cost by saving electricity. Fluorescent lamps also last much longer than incandescent lamps, particularly if they are left on for long periods of time. Fluorescent lamps age most during their start-up cycles. Even around the house, fluorescent floodlights are becoming popular. Fluorescent lamps using about 150 W of power are as bright as incandescent lamps using 500 W. Both are bright, but one is much more energy efficient.

370. As a kid, we'd shake streetlights. They'd get real bright and then explode. Then we'd run away. Why'd they get brighter and explode?
I'll have to guess at this one. If the lamps you are talking about are mercury vapor, then they contain a reservoir or droplet of liquid mercury. If shaking these lamps would cause the mercury to flow out of the cooler reservoir and into hotter regions of the bulb, the mercury would boil and raise the pressure inside the lamp. The current passing through the lamp would increase and the bulb would get very bright. It would also get hotter and hotter, so its pressure would rise still further. Eventually the pressure would become so high that the bulb would explode.

371. Can you get a tan from an ultraviolet light bulb?
Yes. Tanning appears to be your skin's response to chemical damaged caused by ultraviolet (high energy) light. Each photon of ultraviolet let carries enough energy to break a chemical bond in the molecules that make up your skin. Exposure to this light slowly rearranges the chemicals in your tissue. Some of the byproducts of this chemical rearrangement trigger a color change in your skin, a change we call "tanning". Any source of ultraviolet light will cause this sequence of events and produce a tanning response. However, the different wavelengths of light have somewhat different effects on your skin. Long wavelength ultraviolet (between about 300 and 400 nanometers) seems to cause the least injury to cells while evoking the strongest tanning response. Short wavelength ultraviolet (between about 200 and 300 nanometers) does more injury to skin cells and causes more burning and cell death than tanning. However, all of these wavelengths have enough energy to damage DNA and other genetic information molecules so that all ultraviolet sources can cause cancer.

372. Do fluorescent light fixtures emit magnetic fields? If so, would they be intense enough to affect diskette magnetic media?
While fluorescent light fixtures do emit magnetic fields, those fields are far too weak to affect magnetic media. Any electric current produces a magnetic field, even the current flowing through the gas inside a fluorescent tube. However, that field is so weak that it would be difficult to detect. Nearby iron or steel could respond to that weak magnetic field and intensify it, but the field would still be only barely noticeable. The only strongly magnetic component in a fluorescent fixture is its ballast coil. The ballast serves to stabilize the electric discharge in the lamp and relies on a magnetic field to store energy. However, the ballast is carefully shielded and most of its magnetic field remains inside it.

As for affecting diskette magnetic media, that's extraordinarily unlikely. Even if you held a diskette against the ballast, I doubt it would cause any trouble. Modern magnetic recording media have such high coercivities (resistances to magnetization/demagnetizations) that they are only affected by extremely intense fields.


373. Do neon lights have glass that is not colored, but has phosphors that emit a particular color?
A true neon light tube has completely clear (no color, no phosphor) glass surrounding a thin gas of neon atoms. When current runs through that gas, the neon atoms emit red light. In "neon tubes" that emit colors other than red (green, pink, orange, yellow, etc.), there is a layer of phosphor on the inside surface of the glass and mercury vapor inside the tube. These fluorescent tubes probably don't contain any neon at all. You can see the light coming from the phosphor coating. In a true neon tube, you can see the light coming from the gas itself, well inside the glass tube.

374. Does the size of the bulb affect its intensity?
The intensity of a normal fluorescent light bulb is determined by how many times each second (1) a mercury atom can absorb energy in a collision and emit a photon of ultraviolet light and (2) a phosphor particle can absorb a photon of ultraviolet light and emit a photon of visible light. The first rate depends on how much current and electrical power can flow through the tube, which in turn depends on (A) the geometry of the tube and (B) the density of mercury vapor inside. As for (A), the long, thin tube seems to be the best geometry choice for a low voltage (120V) tube, producing a certain amount of ultraviolet light per cubic centimeter of volume. The longer or fatter the tube, the more electrical power it will require and the more ultraviolet light it will produce. As for (B), at room temperature, the density of mercury vapor is just about right. In very cold weather, the density drops quite low and the bulb becomes dim (thus fluorescents are not recommended for outdoor use in cold climates). Finally, the second rate (conversion to visible light) depends on the coating of phosphors on the inside of the tube. A tube that is too fat will send too much ultraviolet light at the phosphors and they will become inefficient. So a long thin tube is a good choice again. Each region of tube surface converts the light from a relatively small volume of mercury gas. Overall, the intensity of the bulb scales roughly with the volume of the tube. Big tubes emit more light than little tubes. One of the challenges facing fluorescent lamp manufacturers is in making small tubes emit lots of light. To replace an incandescent lamp with a miniaturized fluorescent, that miniaturized fluorescent must emit lots of light for its size. They're getting better every year, but they aren't bright enough yet.

375. How do "forbidden transitions" become less forbidden as pressure builds?
For an atom to determine that it cannot make a particular transition (that its electron cannot move from one particular orbital to another), it must first "test the water". The atom effectively tries to make particular transition but finds that this transition is not possible. However, if the atom experiences a collision during the test period, the atom may "accidentally" undergo the forbidden transition. It is as though the atom was prevented from canceling the experiment.

376. How do phosphors change the light from ultraviolet to visible?
They absorb the light and light energy by transferring electrons from low energy valence levels to high-energy conduction levels. These electrons wander about inside the phosphors briefly, losing energy as heat, and then fall back down to empty valence levels. Since they have lost some of their energy to heat, the light that they emit has less energy than the light they absorbed. Incoming ultraviolet light is converted to outgoing visible light.

377. How does a fluorescent light work?
A fluorescent lamp consists of a gas-filled glass tube with an electrode at each end. This lamp emits light when a current of electrons passes through it from one electrode to the other and excites mercury atoms in the tube's vapor. The electrons are able to leave the electrodes because those electrodes are heated to high temperatures and an electric field, powered by the electric company, propels them through the tube. However, the light that the mercury atoms emit is actually in the ultraviolet, where it can't be seen. To convert this ultraviolet light to visible light, the inside surface of the glass tube is coated with a fluorescent powder. When this fluorescent powder is exposed to ultraviolet light, it absorbs the light energy and reemits some of it as visible light, a process called "fluorescence." The missing light energy is converted to thermal energy, making the tube slightly hot. By carefully selecting the fluorescent powders (called "phosphors"), the manufacturer of the light can tailor the light's coloration. The most common phosphor mixtures these days are warm white, cool white, deluxe warm white, and deluxe cool white.

The only other significant component of the fluorescent lamp is its ballast. This device is needed to control the current flow through the tube. Gas discharges such as the one that occurs inside the lamp are notoriously unstable—they're hard to start and, once they do start, tend to become too intense. To regulate the discharge, the ballast controls the amount of current flowing through the tube. In most older lamps, this control is done by an electromagnetic device called an inductor. An inductor opposes current changes and keeps a relatively constant current flowing through the tube (although that current does stop and reverse directions each time the power line current reverses directions — 120 times a second or 60 full cycles, over and back, in the United States). Some modern fluorescent lamps use electronic ballasts—sophisticated electronic controls that regulate current with the help of transistor-like components.


378. How does an ultraviolet ("black light") fluorescent tube work?
Some ultraviolet fluorescent tubes are simply the mercury discharge tubes (as in a normal fluorescent tube) but without any phosphor coating on the inside of the tube and with a quartz glass tube that transmits 254 nanometer light. In such a bulb, the 254-nanometer light emitted by mercury vapor in a discharge is emitted directly from the tube without being converted into visible light. A filter somewhere in the system absorbs the small amount of visible light emitted by a low-pressure mercury discharge. For the longer wavelength black light used in most applications, other gases that emit lots of 300-400 nanometer light are used. Again, these tubes have no phosphor coatings to convert the ultraviolet light into visible light. One other way to make longer wavelength black light is to use a mercury discharge but to coat the inside of the tube with a phosphor that fluoresces ultraviolet light between 300 and 400 nanometer.

www.HowEverythingWorks.org
The Fluorescent Lamps Home Page — Printer Friendly
The Complete Collection of Questions about Fluorescent Lamps (8 prints, from oldest to newest) — Printer Friendly:
1 2 3 4 5 6 7 8 Next 

Generated for printing on Thursday, July 30, 2015 at 23:00:58 EDT
Copyright 1997-2015 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy