How Everything Works
Page 87 of 160 (1595 Questions and Answers)
Click Here to Return to HowEverythingWork.org

MLA Citation: Bloomfield, Louis A. "How Everything Works" How Everything Works 16 Jul 2018. Page 87 of 160. 16 Jul 2018 <http://www.howeverythingworks.org/prints.php?topic=all&page=87>.
861. How does a smoke alarm work? — GL, San Leandro, CA
The most common type of smoke detector uses a tiny amount of a radioactive element called americium to inject electric charges into the air. In the absence of smoke, these electric charges attach themselves to individual air molecules and the resulting ions (electrically charged molecules) move rather easily through the air. However, if there is smoke present in the air, the electric charges attached themselves to the smoke particles and the resulting charged smoke particles don't move easily through the air. The smoke detector measures how easily the charged items it produces move through the air. If these items move easily, then the air is clean. However if they don't move easily, the air contains smoke and the detector signals danger.

862. What is induced polarization and what are its applications? — PSD, Rio de Janeiro, Brazil
An electrically neutral object contains both positive and negative electric charges, however, those opposite charges are equal in amount and therefore cancel one another. But this cancellation doesn't mean that the charges are unaffected by another nearby charge. If you hold an electrically neutral object near an electrically charged object, the charged object will cause a slight rearrangement of the charges in the neutral object. Charges opposite to that of the charged object will shift toward that object while charges like that of the charged object will shift away from that object. The neutral object will acquire an "induced polarization", meaning that it its positive and negative charges are displaced relative to one another and that this displacement is "induced" by the presence of nearby charge. Induced polarization is a common effect and is present whenever lightning is about to strike the ground. As an electrically charged cloud drifts overhead, the objects on the ground acquire induced polarization. Their tops become covered with charge opposite that of the cloud and a lightning strike may occur between the cloud and the oppositely charged top of a tree or building.

863. Can we make an electric fence with no physical wire? — AW, Karachi, Pakistan
No. An electric fence needs at least one real wire. When you put a large electric charge on this wire, anyone who touches it and the ground at the same time will serve as the path through which that charge will flow into the ground. They will receive a shock. But without either the charged wire or the ground, they won't carry any electric current and they won't receive a shock.

864. Why does copper conduct electric currents better than steel and lead? Why do copper and aluminum seem to conduct about the same? - L
A metal's conductivity is related to how far an electron can coast through the metal before suffering a collision that reduces its kinetic energy. Since an electron can collide with an impurity in the metal or a region of local disorder, the first task in obtaining a good conductor is to make a pure and uniform metal. Increased temperature also enhances these inelastic collisions, so keeping a metal cool improves its conductivity. Finally, different metals exhibit different couplings between the electrons and the metal ions from which those electrons came. Copper and aluminum have relatively weak electron-ion couplings while steel and lead have stronger couplings. The stronger the coupling, the more likely is a collision between an electron and an ion. Because of their weaker couplings, the electrons in copper and aluminum suffer far fewer collisions per centimeter than the electrons in steel and lead. That's why copper and aluminum are better conductors of electricity than steel and lead. The coupling in copper is only slightly weaker than that in aluminum, so they have similar conductivities. However, aluminum's tendency to form a very hard, insulating oxide coating (aluminum oxide or "alumina" is the mineral sapphire) makes it a bit tricky to use in wiring.

865. How does heat affect magnetism? — MC, Capitol Heights, MD
The magnetism we associate with a permanent magnet or with steel's response to that permanent magnet involves the careful ordering of tiny magnetic electrons within the materials. Just as heat tends to destroy all forms of order in a newspaper when you put it in the fire, so heat tends to destroy the magnetic order in a permanent magnet or in steel when you bake them. Many permanent magnets lose their magnetism when heated to oven temperatures and even steel becomes non-magnetic when heated red-hot.

866. When TV screens or computer monitors are shown on television shows, they flicker or bars of light wave across them. Why does this happen? — SY, Halifax, Nova Scotia
Although you can't tell it by looking at a television screen, the image on that screen is formed one dot at a time by beams of electrons that are scanning back and forth across its surface from inside. The image is built one line at a time, from the top of the screen to the bottom of the screen, and each line is itself built one dot at a time, from the left side of the screen to the right side of the screen. You can't see this sequential construction process because your persistence of vision prevents you from seeing any changes in intensity that occur in less than about 1/100 of a second. In any short period of time, the screen will only have had time to produce a few horizontal lines of dots. When a camera or television camera observes a television screen, it often makes its observation in such a short period of time that only part of the screen is built. When you then look at the recorded image, you see a horizontal bar of image—the portion of the image that was built during the observation.

867. Can one's health be adversely affected by the use of certain wraps, films, or containers, when heating food in the microwave?
When various plastics become hot, their molecules become more mobile. The most obvious such case is when a plastic actually melts. But even before it melts, a plastic can begin to lose molecules to objects that are touching it. However, the plastics used in cooking are pretty non-toxic, so that even eating pieces of those plastic won't cause you any significant trouble. On the other hand, I would be careful with plastics that weren't intended for cooking. Some non-food related plastics are mixed with additives called "plasticizers" that keep them softer than they would be if they were pure. These plasticizers have a tendency to migrate out of the plastics, giving such things as "vinyl" their characteristic odors. Heating a plastic containing a plasticizer can drive this plasticizer out of the plastic and into something else. I don't think that it's a good idea to eat plasticizers so I would suggest not cooking with plastics that weren't intended for use with food. Still, not all plasticizers are bad—water is an excellent plasticizer for such common plastics as hair and cotton.

868. Do microwaves have no effect on gas?
While water vapor can absorb microwaves at certain frequencies, the absorption mechanism is very different from the one that causes liquid water to become hotter. Steam isn't affected very much by a microwave oven.

869. What are the key components of a microwave oven?
In addition to the digital controller that runs the microwave, it contains (1) a power relay that allows the controller to turn on and off the microwave source, (2) a power transformer that produces the high voltage electricity needed by the magnetron, (3) a power rectifier that converts the alternating current from the transformer into the direct current needed by the magnetron, (4) a capacitor that smoothes out ripples in the direct current leaving the rectifier, (5) a magnetron that uses the high voltage direct current to produce an intense beam of microwaves, (6) a wave guide that transports the microwaves from the magnetron to the cooking chamber, and (7) a cooking chamber in which the food absorbs the microwaves and becomes hotter.

870. How can I make 1000 nanometer light waves visible to the human eye? — DMB, Broken Aarow, OK
Although our eyes are insensitive to 1000 nanometer infrared light, there are two ways to detect it effectively. The easiest is to use an inexpensive black-and-white surveillance video camera. Many of these cameras are sensitive to a broader spectrum of light than are our eyes and they can see 1000 nanometer light. If you check around, you should be able to find one that sees the light you're interested in. The other technique is to use a phosphorescent or "glow in the dark" material. When exposed to visible light, the atoms in such a material become trapped in electronic states that can emit visible light only after a very long random wait. But exposing a phosphorescent material to infrared light can shift the states of the atoms in the material to new states that can emit light immediately. Thus exposing some phosphorescent materials to infrared light causes them to emit light promptly. You can then see these materials glow particularly brightly after storing visible light energy in them and then exposing them to infrared light. However, they'll only glow briefly before you have to "recharge" them by exposing them to more visible light.

www.HowEverythingWorks.org
The How Everything Works Home Page — Printer Friendly
The Complete Collection of Questions (160 prints, from oldest to newest) — Printer Friendly:
Previous 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 Next 

Generated for printing on Monday, July 16, 2018 at 1:00:36 EDT
Copyright 1997-2018 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy