MLA Citation: Bloomfield, Louis A. "Question 1593: Why can't the Japanese stop the chain reactions?"
How Everything Works 18 Oct 2017. 18 Oct 2017 <>.
1593. Why can't the Japanese stop the chain reaction in the Fukushima Daiichi nuclear reactors? — FE
The Japanese did stop the chain reactions in the Fukushima Daiichi reactors, even before the tsunami struck the plant. The problem that they're having now is not the continued fissioning of uranium, but rather the intense radioactivity of the uranium daughter nuclei that were created while the chain reactions were underway. Those radioactive fission fragments are spontaneously decaying now and there is nothing that can stop that natural decay now. All they can do now is to try to contain those radioactive nuclei, keep them from overheating, and wait for them to decay into stable pieces.

The uranium atom has the largest naturally occurring nucleus in nature. It contains 92 protons, each of which is positively charged, and those 92 like charges repel one another ferociously. Although the nuclear force acts to bind protons together when they touch, the repulsion of 92 protons alone would be too much for the nuclear force—the protons would fly apart in almost no time.

To dilute the electrostatic repulsion of those protons, each uranium nucleus contains a large number of uncharged neutrons. Like protons, neutrons experience the attractive nuclear force. But unlike protons, neutrons don't experience the repulsive electrostatic force. Two neutron-rich combinations of protons and neutrons form extremely long-lived uranium nuclei: uranium-235 (92 protons, 143 neutrons) and uranium-238 (92 protons, 146 neutrons). Each uranium nucleus attracts an entourage of 92 electrons to form a stable atom and, since the electrons are responsible for the chemistry of an atom, uranium-235 and uranium-238 are chemically indistinguishable.

When the thermal fission reactors of the Fukushima Daiichi plant were in operation, fission chain reactions were shattering the uranium-235 nuclei into fragments. Uranium-238 is more difficult to shatter and doesn't participate much in the reactor's operation. On occasion, however, a uranium-238 nucleus captures a neutron in the reactor and transforms sequentially into neptunium-239 and then plutonium-239. The presence of plutonium-239 in the used fuel rods is one of the problems following the accident.

The main problem, however, is that the shattered fission fragment nuclei in the used reactor fuel are overly neutron-rich, a feature inherited from the neutron-rich uranium-235 nuclei themselves. Midsize nuclei, such as iodine (with 53 protons), cesium (with 55 protons), and strontium (with 38 protons), don't need as many neutrons to dilute out the repulsions between their protons. While fission of uranium-235 can produce daughter nuclei with 53 protons, 55 protons, or 38 protons, those fission-fragment versions of iodine, cesium, and strontium nuclei have too many neutrons and are therefore unstable—they undergo radioactive decay. Their eventual decay has nothing to do with chain reactions and it cannot be prevented.

How quickly these radioactive fission fragment nuclei decay depends on exactly how many protons and neutrons they have. Three of the most common and dangerous nuclei present in the used fuel rods are iodine-131 (8 days half-life), cesium-137 (30 year half-life), and strontium-90 (29 year half-life). Plutonium-239 (24,200 year half-life) is also present in those rods. When these radioactive nuclei are absorbed into the body and then undergo spontaneous radioactive decay, they damage molecules and therefore pose a cancer risk. Our bodies can't distinguish the radioactive versions of these chemical elements from the nonradioactive ones, so all we can do to minimize our risk is to avoid exposure to them or to encourage our bodies to excrete them by saturating our bodies with stable versions.

Return to
Generated for printing on Wednesday, October 18, 2017 at 16:15:24 EDT
Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy