MLA Citation: Bloomfield, Louis A. "Question 1518"
How Everything Works 22 Oct 2017. 22 Oct 2017 <>.
1518. Why must you "shake down" a mercury fever thermometer? I was told by one manufacturer that mercury expands but does not contract. Also, is it true that the rounded glass acts as a magnifier because the bore is so small? — JB
Mercury does expand with temperature; moreover, it expands more rapidly with temperature than glass goes. That's why the column of mercury rises inside its glass container. While both materials expand as they get hotter, the mercury experiences a larger increase in volume and must flow up the narrow channel or "capillary" inside the glass to find room for itself. Mercury is essentially incompressible so that, as it expands, it pushes as hard as necessary on whatever contains it in order to obtain the space it needs. That's why a typical thermometer has an extra chamber at the top of its capillary. That chamber will receive the expanding mercury if it rises completely up the capillary so that the mercury won't pop the thermometer if it is overheated. In short, the force pushing mercury up the column can be enormous.

The force pushing mercury back down the column as it cools is tiny in comparison. Mercury certainly does contract when cooled, so that the manufacturer is telling you nonsense. But just because the mercury contracts as it cools doesn't mean that it will all flow back down the column. The mercury needs a push to propel it through its narrow channel.

Mercury is attracted only weakly to glass, so it doesn't really adhere to the walls of its channel. However, like all liquids, mercury has a viscosity, a syrupiness, and this viscosity slows its motion through any pipe. The narrower the pipe, the harder one has to push on a liquid to keep it flowing through that pipe. In fact, flow through a pipe typically scales as the 4th power of that pipe's radius, which is why even modest narrowing of arteries can dramatically impair blood flow in people. The capillaries used in fever thermometers are so narrow that mercury has tremendous trouble flowing through them. It takes big forces to push the mercury quickly through such a capillary.

During expansion, there is easily enough force to push the mercury up through the capillary. However, during contraction, the forces pushing the mercury back down through the capillary are too weak to keep the column together. That's because the only thing above the column of liquid mercury is a thin vapor of mercury gas and that vapor pushes on the liquid much too feebly to have a significant effect. And while gravity may also push down on the liquid if the thermometer is oriented properly, it doesn't push hard enough to help much.

The contracting column of mercury takes hours to drift downward, if it drifts downward at all. It often breaks up into sections, each of which drifts downward at its own rate. And, as two readers (Michael Hugh Knowles and Miodrag Darko Matovic) have both pointed out to me in recent days, there is a narrow constriction in the capillary near its base and the mercury column always breaks at that constriction during contraction. Since the top portion of the mercury column is left almost undisturbed when the column breaks at the constriction, it's easy to read the highest temperature reached by the thermometer.

Shaking the thermometer hard is what gets the mercury down and ultimately drives it through the constriction so that it rejoins into a single column. In effect, you are making the glass accelerate so fast that it leaves the mercury behind. The mercury isn't being pushed down to the bottom of the thermometer; instead, the glass is leaping upward and the mercury is lagging behind. The mercury drifts to the bottom of the thermometer because of its own inertia.

You're right that the glass tube acts as a magnifier for that thin column of mercury. Like a tall glass of water, it acts as a cylindrical lens that magnifies the narrow sliver of metal into a wide image.

Return to
Generated for printing on Sunday, October 22, 2017 at 2:17:12 EDT
Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy