MLA Citation: Bloomfield, Louis A. "Question 1514"
How Everything Works 19 Oct 2017. 19 Oct 2017 <http://howeverythingworks.org/print1.php?QNum=1514>.
1514. What packing material protects best? When we drop an egg wrapped in various packaging materials, we know the force that gravity exerts on the egg but how do we know the force of the impact? — DL, Springboro, Ohio
I like to view problems like this one in terms of momentum: when it reaches the pavement, a falling egg has a large amount of downward momentum and it must get rid of that downward momentum gracefully enough that it doesn't break. The whole issue in protecting the egg is in extracting that momentum gracefully.

Momentum is a conserved physical quantity, meaning that it cannot be created or destroyed. It can only be passed from one object to the other. When you let go of the packaged egg and it begins to fall, the downward momentum that gravity transfers into the egg begins to accumulate in the egg. Before you let go, your hand was removing the egg's downward momentum as fast as gravity was adding it, but now the egg is on its own!

Because momentum is equal to an object's mass times its velocity, the accumulating downward momentum in the egg is reflected in its increasing downward speed. With each passing second, the egg receives another dose of downward momentum from the earth. By the time the egg reaches the pavement, it's moving downward fast and has a substantial amount of downward momentum to get rid of. Incidentally, the earth, which has given up this downward momentum, experiences an opposite response—it has acquired an equal amount of upward momentum. However, the earth has such a huge mass that there is no noticeable increase in its upward speed.

To stop, the egg must transfer all of its downward momentum into something else, such as the earth. It can transfer its momentum into the earth by exerting a force on the ground for a certain amount of time. A transfer of momentum, known as an impulse, is the product of a force times a time. To get rid of its momentum, the egg can exert a large force on the ground for a short time or a small force for a long time, or anything in between. If you let it hit the pavement unprotected, the egg will employ a large force for a short time and that will be bad for the egg. After all, the pavement will push back on the egg with an equally strong but oppositely directed force and punch a hole in the egg.

To make the transfer of momentum graceful enough to leave the egg intact, the protective package must prolong the momentum transfer. The longer it takes for the egg to get rid of its downward momentum, the smaller the forces between the egg and the slowing materials. That's why landing on a soft surface is a good start: it prolongs the momentum transfer and thereby reduces the peak force on the egg.

But there is also the issue of distributing the slowing forces uniformly on the egg. Even a small force can break the egg if it's exerted only on one tiny spot of the egg. So spreading out the force is important. Probably the best way of distributing the slowing force would be to float the egg in the middle of a fluid that has the same average density as the egg. But various foamy or springy materials will distribute the forces nearly as well.

In summary, (1) you want to bring the egg to a stop over as long as period of time as possible so as to prolong the transfer of momentum and reduce the slowing forces and (2) you want to involve the whole bottom surface of the egg in this transfer of momentum so that the slowing forces are exerted uniformly on the egg's bottom surface. As for the actual impact force on the egg, you can determine this by dividing the egg's momentum just before impact (its downward speed times its mass) by the time over which the egg gets rid of its momentum.


Return to HowEverythingWork.org
Generated for printing on Thursday, October 19, 2017 at 10:16:19 EDT
Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy