MLA Citation: Bloomfield, Louis A. "Question 1498"
How Everything Works 23 Oct 2017. 23 Oct 2017 <>.
1498. I understand how a transformer changes voltage, but how does it regulate the amperage? - DE
A transformer's current regulation involves a beautiful natural feedback process. To begin with, a transformer consists of two coils of wire that share a common magnetic core. When an alternating current flows through the primary coil (the one bringing power to the transformer), that current produces an alternating magnetic field around both coils and this alternating magnetic field is accompanied by an alternating electric field (recall that changing magnetic fields produce electric fields). This electric field pushes forward on any current passing through the secondary coil (the one taking power out of the transformer) and pushes backward on the current passing through the primary coil. The net result is that power is drawn out of the primary coil current and put into the secondary coil current.

But you are wondering what controls the currents flowing in the two coils. The circuit it is connected to determines the current in the secondary coil. If that circuit is open, then no current will flow. If it is connected to a light bulb, then the light bulb will determine the current. What is remarkable about a transformer is that once the load on the secondary coil establishes the secondary current, the primary current is also determined.

Remember that the current flowing in the secondary coil is itself magnetic and because it is an alternating current, it is accompanied by its own electric field. The more current that is allowed to flow through the secondary coil, the stronger its electric field becomes. The secondary coil's electric field opposes the primary coil's electric field, in accordance with a famous rule of electromagnetism known as Lenz's law. The primary coil's electric field was pushing backward on current passing through the primary coil, so the secondary coil's electric field must be pushing forward on that current. Since the backward push is being partially negated, more current flows through the primary coil.

The current in the primary coil increases until the two electric fields, one from the primary current and one from the secondary current, work together so that they extract all of the primary current's electrostatic energy during its trip through the coil. This natural feedback process ensures that when more current is allowed to flow through the transformer's secondary coil, more current will flow through the primary coil to match.

Return to
Generated for printing on Monday, October 23, 2017 at 22:19:03 EDT
Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy