MLA Citation: Bloomfield, Louis A. "Question 1426"
How Everything Works 12 Dec 2017. 12 Dec 2017 <http://howeverythingworks.org/print1.php?QNum=1426>.
1426. What properties of rubber change in order to make one ball bounce better than another? — JM
During a bounce from a rigid surface, the ball's surface dents. Denting a surface takes energy and virtually all of the ball's energy of motion (kinetic energy) goes into denting its own surface. For a moment the ball is motionless and then it begins to rebound. As the ball undents, it releases energy and this energy becomes the ball's new energy of motion.

The issue is in how well the ball's surface stores and then releases this energy. The ideal ball experiences only elastic deformation—the molecules within the ball do not reorganize at all, but only change their relative spacings during the dent. If the molecules reorganize—sliding across one another or pulling apart in places—then some of the denting energy will be lost due to internal friction-like effects. Even if the molecules slide back to their original positions, they won't recover all the energy and the ball won't bounce to its original height.

In general, harder rubber bounces more efficiently than softer rubber. That's because the molecules in hard rubber are too constrained to be able to slide much. A superball is very hard and bounces well. But there are also sophisticated thermal effects that occur in some seemingly hard rubbers that cause them to lose their stored energy.


Return to HowEverythingWork.org
Generated for printing on Tuesday, December 12, 2017 at 18:51:10 EST
Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy