MLA Citation: Bloomfield, Louis A. "Question 1400"
How Everything Works 20 Oct 2017. 20 Oct 2017 <>.
1400. To keep soda carbonated, is it best to keep it cold in the refrigerator or outside in the room? Also, why does soda fizz more when you pour it over ice than when you drop ice into already-poured soda—is that just because the falling liquid has more kinetic energy? — DG
To keep soda carbonated, you should minimize the rate at which carbon dioxide molecules leave the soda and maximize the rate at which those molecules return to it. That way, the net flow of molecules out of the soda will be small. To reduce the leaving rate, you should cool the soda—as long as ice crystals don't begin to form, cooling the soda will make it more difficult for carbon dioxide molecules to obtain the energy they need to leave the soda and will slow the rate at which they're lost. To increase the return rate, you should increase the density of gaseous carbon dioxide molecules above the soda—sealing the soda container or pressurizing it with extra carbon dioxide will speed the return of carbon dioxide molecules to the soda. Also, minimizing the volume of empty bottle above the soda will make it easier for the soda to pressurize that volume itself. The soda will lose some of its carbon dioxide while filling that volume, but the loss will quickly cease.

One final issue to consider is surface area: the more surface area there is between the liquid soda and the gas above it, the faster molecules are exchanged between the two phases. Even if you don't keep carbon dioxide gas trapped above soda, you can slow the loss of carbonation by keeping the soda in a narrow-necked bottle with little surface between liquid and gas. But you must also be careful not to introduce liquid-gas surface area inside the liquid. That's what happens when you shake soda or pour it into a glass—you create tiny bubbles inside the soda and these bubbles grow rapidly as carbon dioxide molecules move from the liquid into the bubbles. Cool temperatures, minimal surface area, and plenty of carbon dioxide in the gas phases will keep soda from going flat.

As for pouring the soda over ice causing it to bubble particularly hard, that is partly the result of air stirred into the soda as it tumbles over the ice cubes and partly the result of adding impurities to the soda as the soda washes over the rough and impure surfaces of the ice. The air and impurities both nucleate carbon dioxide bubbles—providing the initial impetus for those bubbles to form and grow. Washing the ice to smooth its surfaces and remove impurities apparently reduces the bubbling when you then pour soda of it.

Return to
Generated for printing on Friday, October 20, 2017 at 3:01:40 EDT
Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy