MLA Citation: Bloomfield, Louis A. "Question 1230"
How Everything Works 24 Oct 2017. 24 Oct 2017 <http://howeverythingworks.org/print1.php?QNum=1230>.
1230. Why don't batteries work as well in cold environments? — KS
A battery uses electrochemical processes to provide power to a current passing it. This statement means that if you send an electric charge through the battery in the normal direction, that charge will emerge from the battery with more energy than it had when it entered the battery. But while it might seem that the number of electric charges passing through the battery each second doesn't matter—that each charge will pick up the usual amount of extra energy during its passage—that's not always the case. To understand this fact, let's look at how charges "pass through" the battery and how they pick up energy.

What's really happening is that electrochemical processes are spontaneously separating charges from one another inside the battery and placing those separated charges on the battery's terminals—the battery's negative terminal becomes negatively charged and its positive terminal becomes positively charged. This charge separating process proceeds in a random, statistical manner until enough charges accumulate on the terminals to prevent any further charge separation. Because like charges repel one another, sufficiently large accumulations of positive charges on the positive terminal and negative charges on the negative terminal stop further arrivals of those charges.

But when you send a positive charge through a wire and onto the battery's negative terminal, you reduce the amount of negative charge there and weaken the repulsive forces. As a result, the chemicals in the battery separate another pair of charges. The battery's negative terminal returns to normal, but now there is an extra positive charge on the battery's positive terminal. This extra charge flows away through a wire. Overall, it appears that your positive charge "passed through" the battery—entering the battery's negative terminal and emerging from the positive terminal with more energy than it had when it arrived at the negative terminal. But what really happened was that the battery's chemicals separated another pair of charges.

In a warm environment, the battery's chemicals can separate charges rapidly and can keep up with reasonably large currents of arriving charges. But in a cold battery, the electrochemical processes slow down and it becomes hard for the battery to keep up. If you try to send too much current through the battery while it's cold, it is unable to replace the charges on its terminals quickly enough and it voltage sags—it doesn't have enough separated charges on its terminals to give the charges "passing through" it their full increase in energy. If you use a battery while it's very cold, you should be careful not to send too much current through it because it will become inefficient and will provide less than its usual voltage.


Return to HowEverythingWork.org
Generated for printing on Tuesday, October 24, 2017 at 7:20:43 EDT
Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy