How Everything Works
How Everything Works How Everything Works
 

Site Map
QUESTIONS AND ANSWERS
COURSE INFORMATION
At UVa:
BOOK INFORMATION
INSTRUCTION INFORMATION
PRESENTATION INFORMATION
READER PARTICIPATION
MISCELLANEOUS
 
How Everything Works  
Page 158 of 160 (1595 Questions and Answers)

1571. How are the suffixes of websites determined? For example, why is a particular website .com or .org or .in? — D, India
Permalink
Although yours isn't a physics question, it's one that's interesting to me and easy to answer. The person who sets up the website gets to choose the domain. That's all there is to it. As long as the complete domain name hasn't already been registered, you can pay a fee and register it. For example, I chose to register this website as www.howeverythingworks.org because I feel more like an organization (of one person) than a commercial enterprise. I could have registered it as www.howeverythingworks.in, but that would imply I'm in India and I'm not. The only exception that I know of is .edu, which is restricted to educational institutions. I would not be allowed to register this website as www.howeverythingworks.edu.

Actually, I could have registered this website as www.howeverythingworks.com, but I would have had to purchase that domain name from someone else. It is registered to a cybersquatter—someone who registers a domain name in hopes of selling it at a profit to someone else. Cybersquatting was hugely popular during the internet bubble, when companies were paying vast amounts of money for particular domain names. But these days, who wants to pay thousands of dollars for a name? I'm totally happy to be www.howeverythingworks.org and I'll let someone else pay the big bucks to purchase www.howeverythingworks.com. In the meantime, that domain is just a link to advertising and an offer to sell the domain name.


1572. My dog's bed is on the floor just to the left and below the transformer plug for our house phone. She has been sleeping there for years. She has been experiencing problems lately and I would like to know if the transformer could be emitting some type of harmful waves that could be making her not feel well. — SH, Florida
Permalink
While I'm sorry to hear that your dog isn't well, I doubt that electromagnetic fields are responsible for her infirmities. The fields from the telephone adapter are too weak to have any significant effect and 60-Hz electromagnetic fields don't appear to be dangerous even at considerably stronger levels.

To begin with, plug-in power adapters are designed to keep their electromagnetic fields relatively well contained. They're engineered that way not because of safety concerns but because their overall energy efficiencies would diminish if they accidentally conveyed power to their surroundings. Keeping their fields inside keeps their energy inside, where it belongs. Moreover, any electric and magnetic fields emerging from an adapter probably don't propagate as waves and instead fall off exponentially with distance. As a result, it should be fairly difficult to detect electric or magnetic fields more than a few inches from the adapter.

Even if the adapter did project significant electric and magnetic fields all the way to where your dog sleeps, it's still unlikely that they would cause any harm. For years, researchers have been looking for a correlation between high-voltage electric power lines and a variety of human illnesses, notably childhood cancers such as leukemia. As far as I know, no such correlation has ever been demonstrated. In all likelihood, if there are any risks to being near 60-Hz electric or magnetic fields, those risks aren't large enough to be easily recognized.

In contrast to power adapters, cell phones deliberate emit electric and magnetic fields in order to communicate with distant receivers on cell phone towers. Those fields are woven together to form electromagnetic waves that propagate long distances and definitely don't vanish inches from a cell phone. Any electromagnetic hazard due to a power adapter pales in comparison to the same for cell phones.

Furthermore, cell phone operate at much higher frequencies than the alternating current power line. A typical cell phone frequency is approximately 1 GHz (1,000,000,000 Hz), while ordinary alternating current electric power operates at 60 Hz (50 Hz in Europe). Higher frequencies carry more energy per quanta or "photon" and are presumably more dangerous. But even though cell phones are held right against heads and radiate microwaves directly into brain tissue, they still doen't appear to be significantly dangerous. As unfond as I am of cell phones, I can't condemn them because of any proven radiation hazard. Their biggest danger appears to be driving with them; I don't understand why they haven't been banned from the hands of drivers.

Lastly, there are no obvious physical mechanisms whereby weak to moderate electric and magnetic fields at 60-Hz would cause damage to human or canine tissue. We're essentially non-magnetic, so magnetic fields have almost no effect on us. And electric fields just push charges around in us but that alone doesn't cause any obvious trouble. Research continues into the safety of electromagnetic fields at all frequencies, but this low-frequency stuff (power lines and cell phones) doesn't seem to be unsafe.


1573. If there was a taught cable, wire, or string 5 light years long and I pulled on one end, would the other end move instantly or would the wire, string, or cable lengthen as it tried to pull the other side towards it? — SB
Permalink
The cable would indeed lengthen when you pulled it. In fact, you would produce a wave of stretching motion that travels along the cable at the speed of sound in that cable. That's because you can't directly influence the cable beyond what you can touch. You can only pull on your end of the cable, causing it to accelerate and move, and let it then pull on the portion of cable adjacent to it.

Each portion of cable responds to being pulled by accelerating, moving, and consequently pulling on the portion of cable adjacent to it. There will be a long series of actions—pulling, accelerating, moving, and pulling again—that propagates your influence along the cable. A wave will travel along the cable, a wave consisting of a local reduction in the cable's density. It's a stretching wave. In that respect, the wave is a type of sound wave—a density fluctuation that propagates through a medium.

How quickly the density wave travels along the cable depends on how stiff the cable is and on its average mass density. The stiffer the cable, the more strongly each portion can influence its neighboring portions and the faster the density wave will travel. The greater the cable's mass density, the more inertia it has and the slower it respond to pulls, so the density wave will travel slower.

A cable made from a stiff, low-density material carries sound faster than a soft, high-density material. A steel cable should carry your wave at about 6100 meters/second (3.8 miles/second). But a diamond cable would reach 12000 meters/second (7.5 miles/second) because of its extreme stiffness and a beryllium cable would approach 13000 meters/second (8.0 miles/second) because of its extremely low mass density.

Regardless of which material you choose, you're clearly not going to be able to send any signals faster than the speed of light. It would take a density wave more than 100,000 years to travel the 5-light year length of your cable. And sadly, friction-like dissipation effects in the cable would turn the density wave's energy into thermal energy in a matter of seconds, so it would barely get started on its journey before vanishing into randomness.


1574. Why do high heels worn by a lady walking on a wooden floor leave impressions on the floor? — AK, Abbottabad, Pakistan
Permalink
High heeled shoes can produce enormous pressures on a wooden floor and dent it permanently. To understand why that happens, let's start with a pair of flat-heeled shoes and consider the forces and pressures in that situation.

When a women stands on the floor, the floor must support her weight. Specifically, she isn't accelerating so the net force on her must equal zero. That implies that the floor must exert an upward force on her that exactly cancels her downward weight. She is motionless and stays motionless because there is no overall force on her.

Because the floor is pushing upward on her shoes, her shoes must be pushing downward on the floor. It's an example of the famous "action and reaction" principle known as Newton's third law: if you push on something, it pushes back equally hard in the opposite direction. Anyway, her shoes are pushing down hard on the floor.

Now for the pressure part of the story. Because she is wearing flats, her shoes are pushing against a large area of the floor and the pressure—the force per area—she produces on the floor is relatively small. For example, if she weighs 130 pounds (580 newtons) and her shoes have a contact area of 10 square inches (65 square centimeters), then the pressure she exerts on the floor is about 13 pounds-per-square-inch (9 newtons-per-square-centimeter or 90,000 pascals). That's a gentle pressure that won't permanently dent most woods. It might dent cork or balsa, but that's about it.

But when she wears high heels, most of her weight is supported by a very small area of flooring. If the heels are narrow spikes with a contact area of 0.1 square inches (0.65 square centimeters) and she puts all of her weight briefly on one of the heels, she may exert a pressure of 1300 pounds-per-square-inch (9000 newtons-per-square-centimeter or 90 million pascals) on the floor. That's an enormous pressure that will permanently dent most wooden floors.

You can experiment with these ideas simply by supporting the weight of your right hand with the open palm of your left hand. If you lay your right fist on your left palm, you won't feel any discomfort in your left hand. The pressure on your left palm is very small. But if you instead point right index finger into your left palm and use that finger to support the entire weight of your right hand, it won't feel so comfortable. If you shift all of the weight to your fingernail, it'll start to hurt your left palm. What you're doing is reducing the area of your left palm that is supporting your right hand and as that area gets smaller, the pressure on your left palm increases. Beyond a certain pressure, it feels uncomfortable. Long before your palm dents permanently, you'll decide to stop the experimenting.


1575. My mother used the time cook setting as a timer and after a while of running it completely shut off. There was nothing in the microwave to cook. So I guess what I would like to know is, did she burn up the microwave? — JR, Hanford, California
Permalink
When you run a microwave oven without any food inside, there is nothing to absorb the microwaves and they build up inside the cooking chamber. Eventually, something has to absorb them and that something is the oven's microwave source—its magnetron. The magnetron isn't good at handling excessive power that returns to it from the cooking chamber and it can be damaged as a result.

In all my years of experimenting with microwave ovens, I've only killed a magnetron once. But then again, I haven't run a microwave oven for more than a minute or two without anything inside it. If the oven works again after cooling down, then you're probably OK. The oven may have thermal interlocks in its microwave source to prevent that source from overheating and becoming a fire hazard. If the oven fails to work after an hour of cooling off, then you're probably out of luck. The magnetron and/or its power supply are likely to be fried and in need of replacement.


1576. I read the letter on your website about being burned from water exploding from heating in the microwave. This recently happened to me with a cup of coffee. I thought it was because of the material of the coffee cup. I too felt ridiculous trying to explain my injuries to anyone because it seemed impossible. My question to you is: "are microwave makers responsible for advisement of this kind of hazard"? — JB
Permalink
When you use a microwave oven to heat water in a glass or glazed container, the water will have difficulty boiling properly. That's because boiling is an accelerated version of evaporation in which water vapor evaporates not only from the water's upper surface, but also through the surface of any water vapor bubbles the water happens to contain. I use the phrase "happens to contain" because that is where all the trouble lies.

Below water's boiling temperature, bubbles of water vapor are unstable—they are quickly crushed by atmospheric pressure and vanish into the liquid. At or above water's boiling temperature, those water vapor bubbles are finally dense enough to withstand atmospheric pressure and they grow via evaporation, rise to the surface, and pop. At that point, I'd probably call the water vapor by its other name: steam. But where do those steam or water vapor bubbles come from in the first place?

Forming water vapor bubbles in the midst of liquid water, a process called nucleation, is surprisingly difficult and it typically happens at hot spots or non-wetted defects (places where the water doesn't completely coat the surface and there is trapped air). When you boil water in a metal pot on the stove, there are hot spots and defects galore and nucleating the bubbles is not a problem. When you boil water in a glass or glazed container using a microwave oven, however, there are no significant hot spots and few non-wetted defects. The water boils fitfully or not at all. The "not at all" possibility can lead to disaster.

Water that's being heated in a metal pot on the stove boils so vigorously that the stove is unable to heat it more than tiny bit above its boiling temperature. All the heat that's flowing into the water is consumed by the process of transforming liquid water into gaseous water, so the water temperature doesn't rise. Water that's being heated in a glass container in a microwave oven boils so fitfully that you can heat it above its boiling temperature. It's simply not able to use up all the thermal energy it receives via the microwaves and its temperature keeps rising. The water becomes superheated.

Most of the time, there are enough defects around to keep the water boiling a bit and it superheats only a small amount. When you remove the container of water from the microwave oven and toss in some coffee powder or a teabag, thus dragging air bubbles below the surface, the superheated water boils into those air bubbles. A stream of bubbles suddenly appears on the surface of the water. Most people would assume that those bubbles had something to do with the powder or teabag, not with the water itself. Make no mistake, however, the water was responsible and those bubbles are mostly steam, not air.

Occasionally, though, the water fails to boil at all or stops boiling after it manages to wet the last of the defects on the glass or glazed surface. I've made this happen deliberately many times and it's simply not that hard to do. It can easily happen by accident. With no bubbles to assist evaporation, the water's only way to get rid of heat is via evaporation from its top surface. If the microwave oven continues to add thermal energy to the water while it is having such difficulty getting rid of that energy, the water's temperature will skyrocket and it will superheat severely.

Highly superheated water is explosive. If something causes nucleation in that water, a significant fraction of the water will flash to steam in the blink of an eye and blast the remaining liquid water everywhere. That boiling-hot water and steam are a major burn hazard and the blast can break the container or blow it across the room. I've heard from a good number of people who have been seriously hurt by exploding superheated water produced accidentally in microwave ovens. It's a hazard people should take seriously.

After that long introduction, it's time to answer your question. Yes, I believe that the microwave makers are responsible for advising people of this hazard. Moreover, they know that they are responsible for doing it. If you look at any modern microwave oven user manual, you will find a discussion of superheating or overheating. Look at your manual, I'll bet it's in there.

But that discussion will almost certainly be buried in the middle of an long list of warnings. For example, in one manual, the discussion of overheated water appears as item 17 of 22, after such entries as "4. Install or locate this appliance only in accordance with the provided installation instructions" and "12. Do not immerse cord or plug in water". To be fair to the manufacturer, warning 17 is longest of the bunch and it suggests mostly reasonable precautions (although I'm not so happy with recommendation 17a: "Do not overheat the liquid."). No Duh.

I think the issue is this: most product warnings are provided not out of any sincere concern for the consumer, but out of fear of litigation. A manufacturer's goal when providing those warnings is therefore to be absolutely comprehensive so that they can point to a line in a user manual in court and claim to have fulfilled their responsibility. The number and order of the warnings makes no difference; they just have to be in there somewhere.

So all those warnings you ignore in product literature aren't really about consumer safety, they're about product liability. You ignore them because everything now comes with a thousand of them, ranging from the reasonable to the ridiculous. For my research, I ordered 99.999% pure sodium chloride (i.e., ultrapure table salt). It came with a 6-page Material Safety Data Sheet that identifies it as an "Xi Irritant", noting that it is "Irritating to eyes, respiratory system and skin" and recommending first aid measures that include:

"After inhalation: supply fresh air. If required, provide artificial respiration. Keep patient warm. Seek immediate medical advice.
After skin contact: Immediately wash with water and soap and rinse thoroughly. Seek immediate medical advice.
After eye contact: rinse opened eye for several minutes under running water. Then consult a doctor."
So much for swimming in the ocean...

By design and by accident, our society has lost the ability to distinguish real risk from imaginary risk. We treat all risks as equal and spend way too much time worrying about the wrong ones. If you want to be safer around your cell phone, for example, you should worry more about driving with it in your hand than about the microwave radiation it emits. The current evidence is that your risk of injury or death due to a cell-phone related accident far outweighs your risk from cell-phone microwave exposure. Even if further research proves that cell phone microwave exposure is injurious, we should be acting according to our best current assessments of risk, not according to fears and beliefs.

That said, I'd like to see product literature rank their warnings according to risk and put the real risks in a separate place where they can't be overlooked or ignored. Put the real consumer safety stuff where the consumers will see it and put the product liability stuff somewhere else where the lawyers can find it. For a microwave oven, there are probably about half a dozen real risks that people should know about. Several of them are relatively obvious (e.g., don't heat sealed containers) and some are not obvious (e.g., liquids heated in the microwave can become superheated and explode).

Maybe we'll get a handle on risk someday. In the meantime, inform your friends and children that they should be careful about heating liquids in the microwave, particularly in glass or glazed containers. Just knowing that superheating is possible would probably halve the number of burns and other injuries that result from superheating accidents.


1577. I am a 3rd grade student and would like to do a science project for the science fair. My question is why does salt make objects float? (small objects like eggs, paperclips) — MP, Brooklyn, New York
Permalink
Adding salt to water won't make everything float, but it will work for an object that just barely sinks in pure water. A hard-boiled egg is the most famous example: the egg will sink in pure water, but float in concentrated salt water. To explain why that happens, I need to tell you about the two forces that act on the egg when it's in the water.

First, the egg has its weight—it's being pulled downward by gravity. That weight force tends to make the egg sink. Second, the egg is being pushed upward by the water around it with a force known as "the buoyant force." The buoyant force tends to make the egg float. It's a battle between those two forces and the strongest one wins.

The buoyant force exists because the water that is now surrounding the egg used to be surrounding an egg-shaped blob of water and it was pushing up on that blob of water just hard enough to support the blob's weight. Now that the egg has replace the egg-shaped blob of water, the surrounding water is still pushing up the same amount as before and that upward force on the egg is the buoyant force.

Since the buoyant force on the egg is equal in amount to the weight of the water that used to be there, it can support the egg only if the egg weighs no more than the egg-shaped blob of water. If the egg is heavier than that blob of water, the buoyant force will be too weak to support it and the egg will sink.

It so happens that a hard-boiled egg weighs slightly more than an egg-shaped blob of pure water, so it sinks in pure water. But that egg weighs slightly less than an egg-shaped blob of very salty water. Adding salt to the water increases the water's weight significantly while having only a small effect on the water's volume. Salt water is heavier, cup for cup, than fresh water and it produces stronger buoyant forces.

In general, any object that weighs more than the fluid it displaces sinks in that fluid. And any object that weighs less than the fluid it displaces floats. You are another good example of this: you probably sink in fresh water, particularly after letting out all the air in your lungs. But you float nicely in extremely salty water. The woman in this photograph is floating like a cork in the ultra-salty water of the Dead Sea.


1578. I have been told, that incandescent light bulbs are being phased out to be replaced by fluorescent bulbs that use less energy. This will happen I think next year? Is that true? — CD, Abilene, Texas
Permalink
Incandescent lightbulbs will be phased out beginning with 100-watt bulbs in 2012 and ending with 40-watt bulbs in 2014. The reason for this phase out is simple: incandescent lightbulbs are horribly energy inefficient.

Light is a form of energy, so you can compare the visible light energy emitted by any lamp to the energy that lamp consumes. According to that comparison, an incandescent lightbulb is roughly 5% efficient—a 100-watt incandescent bulb emits about 5 watts of visible light. In contrast, a fluorescent lamp is typically about 20% energy efficient—a 25-watt fluorescent lamp emits about 5 watts of visible light.

fluorescent lamp
incandescent lightbulbs

Another way to compare incandescent and fluorescent lamps is via their lumens per watt. The lumen is a standard unit of usable illumination and it incorporates factors such as how sensitive our eyes are to various colors of light. If you divide a light source's light output in lumens by its power input in watts, you'll obtain its lumens per watt.

For the incandescent lightbulb appearing at the left of the photograph, that calculation yields 16.9 lumens/watt. For the "long life" bulb at the center of the photograph, it give only 15.3 lumens/watt. And for the color-improved bulb on the right of the photograph, the value is only 12.6 lumens/watt. Our grandchildren will look at this photograph of long forgotten incandescent bulbs and be amazed that we could squander so much energy on lighting.

The fluorescent lamp in the other photograph is far more efficient. It produces more useful illumination than any of the three incandescent bulbs, yet it consumes just over a quarter as much power. Dividing its light out in lumens by its power consumption in watts yields 64.6 lumens/watts. It is 4 times as energy efficient as the best of the incandescent lightbulbs. Some fluorescent lamps are even more efficient than that.

Another feature to compare is life expectancy. Even the so-called "long life" incandescent predicts a 1500 hour life, which is only 15% of the predicted life for the fluorescent lamp (10,000 hours). Although the fluorescent costs more, it quickly pays for itself in energy use and less frequent replacement. You should recycle a fluorescent lamp because it does contain a tiny amount of mercury, but overall it's a much more environmentally friendly light source.


1579. If microwaves are reflected by the door on a microwave oven, how are they able to pass tens of miles from mobile phone transmitters through solid walls and into our mobile phones? — JW, Belfast, Northern Ireland
Permalink
The door of a microwave oven is carefully designed to reflect microwaves so that they can't escape from the oven. That mesh that you see in the door isn't plastic, it's metal. Metal surfaces reflect microwaves and, even though the mesh has holes in it to allow you to observe the food, it acts as a perfect mirror for the microwaves. Basically, the holes are so much smaller than the 12.2-cm wavelength of the 2.45-GHz microwave that the microwave cannot propagate through the holes. Electric currents flow through the metal mesh as the microwave hits it and those currents re-radiate the microwave in the reflected direction. Since the holes aren't big enough to disrupt that current flow, the mesh reflects the microwaves as effectively as a solid metal surface would.

As for how your cell phone and the cell tower can communicate for miles despite all the intervening stuff, it's actually a challenge. The microwaves from your phone and the tower are partly absorbed and partly reflected each time they encounter something in your environment, so they end up bouncing their way through an urban landscape. That's why cell towers have multiple antennas and extraordinarily sophisticated transmitting and receiving equipment. They are working like crazy to direct their microwaves at your phone as effectively as possible and to receive the microwaves from your phone even though those waves are very weak and arrive in bits and pieces due to all the scattering events they experience during their passage. Indoor cell phone reception is typically pretty poor unless the building has its own internal repeaters or microcells.

There are times when you don't get any reception because the microwaves from the cell phone and tower are almost completely absorbed or reflected. For example, if you were to stand in a metalized box, the microwaves from your cell phone would be trapped in the box and would not reach the cell tower. Similarly, the microwaves from the cell tower would not reach you. Moreover, the box doesn't have to be fully metalized; a metal mesh or a transparent conductor is enough to reflect the microwaves. Transparent conductors are materials that conduct relatively low-frequency currents but don't conduct currents at the higher frequencies associated with visible light. They're used in electronic displays (e.g., computer monitors and digital watches) and in energy-conserving low-E windows. I haven't experimented with cell phone reception near low-E windows, but I'm eager to give it a try. I suspect that a room entirely walled by low-E windows will have lousy cell phone reception.


1580. How can I describe a polymer to a group of 4th grade students? — M, Hanover, Massachusetts
Permalink
Polymers are simply giant molecules that were formed by sticking together a great many small molecules. The properties of a given polymer depend on which small molecules it contains and how those molecules were assembled. To help your students visualize this idea, I'd go right to two familiar models: snap-together beads ("pop beads") and spaghetti.

Snap-together beads are a perfect model for many polymers. As individual beads, you can pour them like a liquid and move your hand through them easily. But once you begin snapping them together into long chains, they develop new properties that weren't present in the beads themselves. For example, they get tangled together and don't flow so easily any more.

That emergence of new properties is exactly what happens in many polymers. For example, ethylene is a simple gas molecule, but if you stick ethylene molecules together to form enormous chains, you get polyethylene (more specifically, high-density polyethylene, recycling number 2, milk-jug plastic). Ethylene molecules are called "monomers" and the giant chains that are made from them are called "polymers".

Polyethylene retains some of the chemical properties of its monomer units, namely that it doesn't react with most other chemicals and almost nothing sticks to it. But polyethylene also has properties that the monomer units didn't have: polyethylene is a sturdy, flexible solid. You can stretch it without breaking it. That happens because you can make its polymer molecules slide across one another, but you can't untangle the tangles.

To get an idea of what it's like to work with molecules that can slide through each other but may not be able to untangle themselves, shift over to cooked and drained spaghetti. If you dice the spaghetti up into tiny pieces, it's like the monomers—nothing to tangle. You can pour the tiny pieces like a liquid. But trying doing that with a bowl of long spaghetti noddles. They're so tangled up that they can't do much. In fact, if you let the water dry up to some extent, the stuff will become a sturdy, flexible solid, just like HDPE!

There is much more to say about polymers, for example, they're not all simple straight chains and some of them cross-link so that they can't untangle no matter what you do. But this should be a good start. Polymer molecules are everywhere, including in paper and hair. Paper is primarily cellulose, giant molecules built out of sugar molecules. Hair is protein polymer, giant molecules built out of protein monomer units. They're both sturdy, stretchy, flexible solids and they're both softened by water—which acts as a molecular lubricant for the polymer molecules. Not all polymers are sturdy, or stretchy, or flexible, but a good many are.


www.HowEverythingWorks.org
The How Everything Works Home Page
The Complete Collection of Questions (160 pages, from oldest to newest):
Previous 148 149 150 151 152 153 154 155 156 157 158 159 160 Next 
Copyright 1997-2014 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy