How Everything Works
How Everything Works How Everything Works

Site Map
At UVa:
How Everything Works  
Page 152 of 160 (1595 Questions and Answers)

1511. My 10-year old son understands that body temperature is related to the speeds/kinetic energies of the molecules inside you, but does friction play a role as well? — MR
You're both right about temperature being associated with kinetic energy in molecules: the more kinetic energy each molecule has, the hotter the substance (e.g. a person) is. But not all kinetic energy "counts" in establishing temperature. Only the disordered kinetic energy, the tiny chucks of kinetic energy that belong to individual particles in a material contributes to that material's temperature. Ordered kinetic energy, such as the energy in a whole person who's running, is not involved in temperature. Whether an ice cube is sitting still on a table or flying through the air makes no difference to its temperature. It's still quite cold.

Friction's role with respect to temperature is in raising that temperature. Friction is a great disorderer. If a person running down the track falls and skids along the ground, friction will turn that person's ordered kinetic energy into disordered kinetic energy and the person will get slightly hotter. No energy was created or destroyed in the fall and skid, but lots of formerly orderly kinetic energy became disordered kinetic energy—what I often call "thermal kinetic energy."

The overall story is naturally a bit more complicated, but the basic idea here is correct. Once energy is in the form of thermal kinetic energy, it's stuck... like a glass vase that has been dropped and shattered into countless pieces, thermal kinetic energy can't be entirely reconstituted into orderly kinetic energy. Once energy has been distributed to all the individual molecules and atoms, getting them all to return their chunks of thermal kinetic energy is hopeless. Friction, even at the molecular level, isn't important at this point because the energy has already been fragmented and the most that any type of friction can do is pass that fragmented energy about between particles. So friction creates thermal kinetic energy (out of ordered energies of various types)... in effect, it makes things hot. It doesn't keep them hot; they do that all by themselves.

1512. Why are physicists so skeptical about peoples' claims to have invented motors that provide mechanical power without consuming electric power or generators that produce electric power without consuming mechanical power from the systems that turns them? — LB (Yes, I'm asking myself this question)
While it may seem as though there is some grand conspiracy among physicists to deny validation to those inventors, nothing could be farther from the truth. Physicists generally maintain a healthy skepticism about whatever they hear and are much less susceptible to dogmatic conservativism than one might think. However, physicists think long and deep about the laws that govern the universe, especially about their simplicity and self-consistency. In particular, they learn how even the slightest disagreement between a particular law and the observed behavior of the universe indicates either a problem with that law (typically an oversimplification, but occasionally a complete misunderstanding) or a failure in the observation. The law of energy conservation is a case in point: if it actually failed to work perfect even one time, it would cease to be a meaningful law. The implications for our understanding of the universe would be enormous. Physicists have looked for over a century for a failure of energy conservation and have never found one; not a single one. (Note: relativistic energy conservation involves mass as well as energy, but that doesn't change the present story.)

The laws of both energy conservation and thermodynamics are essentially mathematical laws—they depend relatively little on the specific details of our universe. Just about the only specific detail that's important is time-translation symmetry: as far as we can tell, physics doesn't change with time—physics today is the same as it was yesterday and as it will be tomorrow. That observation leads, amazingly enough, to energy conservation: energy cannot be created or destroy; it can only change forms or be transferred between objects. Together with statistical principals, we can derive thermodynamics without any further reference to the universe itself. And having developed energy conservation and the laws of thermodynamics, the game is over for free-energy motors and generators. They just can't work. It's not a matter of looking for one special arrangement that works among millions that don't. There are exactly zero arrangements that work.

It's not a matter of my bias, unless you consider my belief that 2 plus 2 equals 4 to be some sort of bias. You can look all you like for a 2 that when added to another 2 gives you a 5, but I don't expect you to succeed.

About once every month or two, someone contacts me with a new motor that turns for free or a generator that creates power out of nowhere. The pattern always repeats: I send them the sad news that their invention will not work and they respond angrily that I am not listening, that I am biased, and that I am part of the conspiracy. Oh well. There isn't much else I can do. I suppose I could examine each proposal individually at length to find the flaw, but I just don't have the time. I'm a volunteer here and this is time away from my family.

Instead, I suggest that any inventor who believes he or she has a free-energy device build that device and demonstrate it openly for the physics community. Take it to an American Physical Society conference and present it there. Let everyone in the audience examine it closely. Since anyone can join the APS and any APS member can talk at any major APS conference, there is plenty of opportunity. If someone succeeds in convincing the physics community that they have a true free-energy machine, more power to them (no pun intended). But given the absence of any observed failure of time-translation symmetry, and therefore the steadfast endurance of energy conservation laws, I don't expect any successful devices.

1513. Can infrared lasers, thermal cameras, digital cameras, or optical fiber cameras be used to see through walls of homes or to monitor people's conversations? — CB, Connecticut
I'm beginning to think that movies and television do a huge disservice to modern society by blurring the distinction between science and fiction. So much of what appears on the big and little screen is just fantasy.

The walls of your home are simply hard to look through. They block visible, infrared, and ultraviolet light nearly perfectly and that doesn't leave snoopers many good options. A person sitting outside your home with a thermal camera—a device that "sees" the infrared light associated with body-temperature objects—or a digital camera is going to have a nice view of your wall, not you inside. There are materials that, while opaque to visible light, are relatively transparent to infrared light, such as some plastics and fabrics. However, typical wall materials are too thick and too opaque for infrared light to penetrate. Sure, someone can put a camera inside your home and access it via an optical fiber or radio waves, but at that point, they might as well just peer through your window.

The only electromagnetic waves that penetrate walls well are radio waves, microwaves, and X rays. If someone builds an X ray machine around your home, they'll be able to see you, or at least your bones. Don't forget to wave. And, in principle, they could use the radar technique to look for you with microwaves, but you'd be a fuzzy blob at best and lost in the jumble of reflections from everything else in your home.

As for using a laser to monitor your conversations from afar, that's a real possibility. Surfaces vibrate in the presence of sound and it is possible to observe those vibrations via reflected light. But the technical work involved is substantial and it's probably easier to just put a bug inside the house or on its surface.

Since I first posted this answer, several people have pointed out to me that terahertz radiation also penetrates through some solid surfaces and could be used to see through the walls of homes. In fact, the whole low-frequency end of the electromagnetic spectrum (radio, microwaves, terahertz waves) can penetrate through electrically insulating materials in order to "observe" conducting materials inside a home and the whole high-frequency end of that spectrum (X-rays and gamma rays) can penetrate through simple atoms (low atomic number) in order to "observe" complex atoms inside a home. Still, these approaches to seeing through walls require the viewers to send electromagnetic waves through the house and those waves can be detected by the people inside. They're also not trivial to implement. I suppose that people could use ambient electromagnetic waves to see what's happening in a house, but that's not easy, either. Where there's a will, there's a way: stealth aircraft have been detected by way of the dark spot they produce in the ambient radio spectrum and the insides of the pyramids have been studied by looking at cosmic rays passing through them. Nonetheless, I don't think that many of us need worry about being studied through the walls of our homes.

1514. What packing material protects best? When we drop an egg wrapped in various packaging materials, we know the force that gravity exerts on the egg but how do we know the force of the impact? — DL, Springboro, Ohio
I like to view problems like this one in terms of momentum: when it reaches the pavement, a falling egg has a large amount of downward momentum and it must get rid of that downward momentum gracefully enough that it doesn't break. The whole issue in protecting the egg is in extracting that momentum gracefully.

Momentum is a conserved physical quantity, meaning that it cannot be created or destroyed. It can only be passed from one object to the other. When you let go of the packaged egg and it begins to fall, the downward momentum that gravity transfers into the egg begins to accumulate in the egg. Before you let go, your hand was removing the egg's downward momentum as fast as gravity was adding it, but now the egg is on its own!

Because momentum is equal to an object's mass times its velocity, the accumulating downward momentum in the egg is reflected in its increasing downward speed. With each passing second, the egg receives another dose of downward momentum from the earth. By the time the egg reaches the pavement, it's moving downward fast and has a substantial amount of downward momentum to get rid of. Incidentally, the earth, which has given up this downward momentum, experiences an opposite response—it has acquired an equal amount of upward momentum. However, the earth has such a huge mass that there is no noticeable increase in its upward speed.

To stop, the egg must transfer all of its downward momentum into something else, such as the earth. It can transfer its momentum into the earth by exerting a force on the ground for a certain amount of time. A transfer of momentum, known as an impulse, is the product of a force times a time. To get rid of its momentum, the egg can exert a large force on the ground for a short time or a small force for a long time, or anything in between. If you let it hit the pavement unprotected, the egg will employ a large force for a short time and that will be bad for the egg. After all, the pavement will push back on the egg with an equally strong but oppositely directed force and punch a hole in the egg.

To make the transfer of momentum graceful enough to leave the egg intact, the protective package must prolong the momentum transfer. The longer it takes for the egg to get rid of its downward momentum, the smaller the forces between the egg and the slowing materials. That's why landing on a soft surface is a good start: it prolongs the momentum transfer and thereby reduces the peak force on the egg.

But there is also the issue of distributing the slowing forces uniformly on the egg. Even a small force can break the egg if it's exerted only on one tiny spot of the egg. So spreading out the force is important. Probably the best way of distributing the slowing force would be to float the egg in the middle of a fluid that has the same average density as the egg. But various foamy or springy materials will distribute the forces nearly as well.

In summary, (1) you want to bring the egg to a stop over as long as period of time as possible so as to prolong the transfer of momentum and reduce the slowing forces and (2) you want to involve the whole bottom surface of the egg in this transfer of momentum so that the slowing forces are exerted uniformly on the egg's bottom surface. As for the actual impact force on the egg, you can determine this by dividing the egg's momentum just before impact (its downward speed times its mass) by the time over which the egg gets rid of its momentum.

1515. Is it possible to capture and keep ionized gases or air in a container of some sort? That way they could be sprayed out at any time just like room deodorant. — CW
No, you cannot store charged gases in any simple container. If you try to store a mixture of positively and negatively charge gas particles in a single container, those opposite charges will attract and neutralize one another. And if you try to store only one type of charge in a container, those like charges will repel and push one another to the walls of the container. If the container itself conducts electricity, the charges will escape to the outside of the container and from there into the outside world. And if the container is insulating, the charges will stick to its inside surface and you'll have trouble getting them to leave. Moreover, you'll have trouble putting large numbers of those like-charged gas particles into the container in the first place because the ones that enter first will repel any like charges that follow.

1516. While shopping for a new microwave I was asking the salesperson at a local store some questions regarding microwaves. He proceeded to tell me how dangerous they were and that they used to sell some sort of testers to see if the new microwaves they were selling "leaked radiation". He told me that they all did and that microwaves give off "harmful" radiation. He said that it affects the food that we cook in it and can cause cancer. He said "Think about it, when you get an x-ray the tech covers himself with a lead shield and here we are putting our food into this and there is no lead shield. Needless to say I did not purchase a microwave yesterday, and was wondering if you could please give me some insight on this and tell me is what this salesperson told me is true. Are microwave ovens really harmful? Do they cause cancer? What about the food, does it become toxic. A friend of mine is totally into all organic food and she "unplugged" her microwave years ago and never used it since. She swears it is harmful. Please help. Heating food in a pot is so inconvenient!! — KO
The salesperson you spoke to was simply wrong. If you'll allow me to stand on my soapbox for a minute, I'll tell you that this is a perfect example of how important it is for everyone to truly learn basic science while they're in school and not to simply suffer through the classes as a way to obtain a degree. The salesperson is apparently oblivious to the differences between types of "radiation," to the short- and long-term effects of those radiations, and to the importance of intensity in radiation.

Let's start with the differences in types of radiation. Basically, anything that moves is radiation, from visible light, to ultraviolet, to X-rays, to microwaves, to alpha particles, to neutrons, and even to flying pigeons. These different radiations do different things when they hit you, particularly the pigeons. While "ionizing radiations" such as X-rays, ultraviolet, alpha particles, and neutrons usually have enough localized energy to do chemical damage to the molecules they hit, "non-ionizing radiation" such as microwaves and pigeons do not damage molecules. When you and your organic friend worry about toxic changes in food or precancerous changes in your tissue, what really worry you are molecular changes. Microwaves and pigeons don't cause those sorts of changes. Microwaves effectively heat food or tissue thermally, while pigeons bruise food or tissue on impact.

Wearing a lead apron while working around ionizing radiation makes sense, although a simple layer of fabric or sunscreen is enough to protect you from most ultraviolet. To protect yourself against pigeons, wear a helmet. And to protect yourself against microwaves, use metal. The cooking chamber of the microwave oven is a metal box (including the screened front window). So little microwave "radiation" escapes from this metal box that it's usually hard to detect, let alone cause a safety problem. There just isn't much microwave intensity coming from the oven and intensity matters. A little microwaves do nothing at all to you; in fact you emit them yourself!

If you want to detect some serious microwaves, put that microwave detector near your cellphone! The cellphone's job is to emit microwaves, right next to your ear! Before you give up on microwave ovens, you should probably give up on cellphones. That said, I think the worst danger about cellphones is driving into a pedestrian or a tree while you're under the influence of the conversation. Basically, non-ionizing radiation such as microwaves is only dangerous if it cooks you. At the intensities emitted by a cellphone next to your ear, it's possible that some minor cooking is taking place. However, the cancer risk is almost certainly nil.

Despite all this physics reality, salespeople and con artists are still more than happy to sell you protection against the dangers of modern life. I chuckle at the shields people sell to install on your cellphones to reduce their emissions of harmful radiation. The whole point of the cellphone is to emit microwave signals to the receiving tower, so if you shield it you spoil its operation! It would be like wrapping an X-ray machine in a lead box to protect the patient. Sure, the patient would be safe but the X-ray machine would barely work any more.

Returning to the microwave cooking issue, once the food comes out of the microwave oven, there are no lingering effects of its having been cooked with microwaves. There is no convincing evidence of any chemical changes in the food and certain no residual cooking microwaves around in the food. If you're worried about toxic changes to your food, avoid broiling or grilling. Those high-surface-temperature cooking techniques definitely do chemical damage to the food, making it both tasty and potentially a tiny bit toxic. One of the reasons why food cooked in the microwave oven is so bland is because those chemical changes don't happen. As a result, microwave ovens are better for reheating than for cooking.

1517. I recently bought a used microwave oven. The enamel coating under the glass turntable tray is rusted in a ring around the track that the turntable rotates on. Should I repair this or is it ok to just use it as is? — AA, Kettering, Ohio
As long as the oven's metal bottom is sound underneath the rust, there isn't a problem. The cooking chamber walls are so thick and highly conducting that they reflect the microwaves extremely well even when they have a little rust on them. However, if the metal is so rusted that it loses most of its conductivity in the rust sites, you'll get local heating across the rusty patches and eventually leakage of microwaves. If you're really concerned that there may be trouble, run the microwave oven empty for about 20 seconds and then (carefully!) touch the rusty spots. If they aren't hot, then the metal underneath is doing its job just fine.

1518. Why must you "shake down" a mercury fever thermometer? I was told by one manufacturer that mercury expands but does not contract. Also, is it true that the rounded glass acts as a magnifier because the bore is so small? — JB
Mercury does expand with temperature; moreover, it expands more rapidly with temperature than glass goes. That's why the column of mercury rises inside its glass container. While both materials expand as they get hotter, the mercury experiences a larger increase in volume and must flow up the narrow channel or "capillary" inside the glass to find room for itself. Mercury is essentially incompressible so that, as it expands, it pushes as hard as necessary on whatever contains it in order to obtain the space it needs. That's why a typical thermometer has an extra chamber at the top of its capillary. That chamber will receive the expanding mercury if it rises completely up the capillary so that the mercury won't pop the thermometer if it is overheated. In short, the force pushing mercury up the column can be enormous.

The force pushing mercury back down the column as it cools is tiny in comparison. Mercury certainly does contract when cooled, so that the manufacturer is telling you nonsense. But just because the mercury contracts as it cools doesn't mean that it will all flow back down the column. The mercury needs a push to propel it through its narrow channel.

Mercury is attracted only weakly to glass, so it doesn't really adhere to the walls of its channel. However, like all liquids, mercury has a viscosity, a syrupiness, and this viscosity slows its motion through any pipe. The narrower the pipe, the harder one has to push on a liquid to keep it flowing through that pipe. In fact, flow through a pipe typically scales as the 4th power of that pipe's radius, which is why even modest narrowing of arteries can dramatically impair blood flow in people. The capillaries used in fever thermometers are so narrow that mercury has tremendous trouble flowing through them. It takes big forces to push the mercury quickly through such a capillary.

During expansion, there is easily enough force to push the mercury up through the capillary. However, during contraction, the forces pushing the mercury back down through the capillary are too weak to keep the column together. That's because the only thing above the column of liquid mercury is a thin vapor of mercury gas and that vapor pushes on the liquid much too feebly to have a significant effect. And while gravity may also push down on the liquid if the thermometer is oriented properly, it doesn't push hard enough to help much.

The contracting column of mercury takes hours to drift downward, if it drifts downward at all. It often breaks up into sections, each of which drifts downward at its own rate. And, as two readers (Michael Hugh Knowles and Miodrag Darko Matovic) have both pointed out to me in recent days, there is a narrow constriction in the capillary near its base and the mercury column always breaks at that constriction during contraction. Since the top portion of the mercury column is left almost undisturbed when the column breaks at the constriction, it's easy to read the highest temperature reached by the thermometer.

Shaking the thermometer hard is what gets the mercury down and ultimately drives it through the constriction so that it rejoins into a single column. In effect, you are making the glass accelerate so fast that it leaves the mercury behind. The mercury isn't being pushed down to the bottom of the thermometer; instead, the glass is leaping upward and the mercury is lagging behind. The mercury drifts to the bottom of the thermometer because of its own inertia.

You're right that the glass tube acts as a magnifier for that thin column of mercury. Like a tall glass of water, it acts as a cylindrical lens that magnifies the narrow sliver of metal into a wide image.

1519. Why is a car's rear window put and kept under stress, and what has this to do with polarization? — BD, Leuven, Belgium
The rear window of a car is made of tempered glass — the glass is heated approximately to its softening temperature and then cooled abruptly to put its surface under compression, leaving its inside material under tension. That tempering process makes the glass extremely strong because its compressed surface is hard to tear. But once a tear does manage to propagate through the compressed surface layer into the tense heart of the glass, the entire window shreds itself in a process called dicing fracture — it tears itself into countless little cubes.

The stresses frozen into the tempered glass affect its polarizability and give it strange characteristics when exposed to the electromagnetic fields in light. This stressed glass tends to rotate polarizations of the light passing through it. As a result, you see odd reflections of the sky (skylight is polarized to some extent). Those polarization effects become immediately apparent when you wear polarizing sunglasses.

1520. What happens when sheets of paper, long rolled up into a tube, are unrolled but simply won't ever lie flat again? — PD
Paper consists mostly of cellulose, a natural polymer (i.e. plastic) built by stringing together thousands of individual sugar molecules into vast chains. Like the sugars from which it's constructed, cellulose's molecular pieces cling tightly to one another at room temperature and make it rather stiff and brittle. Moreover, cellulose's chains are so entangled with one another that it couldn't pull apart even if its molecular pieces didn't cling so tightly. These effects are why it's so hard to reshape cellulose and why wood or paper don't melt; they burn or decompose instead. In contrast, chicle — the polymer in chewing gum — can be reshaped easily at room temperature.

Even though pure cellulose can't be reshaped by melting, it can be softened with water and/or heat. Like ordinary sugar, cellulose is attracted to water and water molecules easily enter its chains. This water lubricates the chains so that the cellulose becomes somewhat pliable and heat increases that pliability. When you iron a damped cotton or linen shirt, both of which consist of cellulose fibers, you're taking advantage of that enhanced pliability to reshape the fabric.

But even when dry, fibrous materials such as paper, cotton, or linen have some pliability because thin fibers of even brittle materials can bend significantly without breaking. If you bend paper gently, its fibers will bend elastically and when you let the paper relax, it will return to its original shape.

However, if you bend the paper and keep it bent for a long time, the cellulose chains within the fibers will begin to move relative to one another and the fibers themselves will begin to move relative to other fibers. Although both of these motions can be facilitated by moisture and heat, time along can get the job done at room temperature. Over months or years in a tightly rolled shape, a sheet of paper will rearrange its cellulose fibers until it adopts the rolled shape as its own. When you then remove the paper from its constraints, it won't spontaneously flatten out. You'll have to reshape it again with time, moisture, and/or heat. If you press it in a heavy book for another long period, it'll adopt a flat shape again.
The How Everything Works Home Page
The Complete Collection of Questions (160 pages, from oldest to newest):
Previous 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 Next 
Copyright 1997-2014 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy