How Everything Works   Page 151 of 160 (1595 Questions and Answers) Printer Friendly Version

1501. I have heard that we "know" the universe is expanding because everything is moving away from everything else. My question is: if this situation is like ink dots on a balloon, then we should be able to point to the direction of the universe's center. Which way is that center? - BS
The "ink dots on a balloon" idea provides the answer to your question. In that simple analogy, the ink dots represent stars and galaxies and the balloon's surface represents the universe. Inflating the balloon is then equivalent to having the universe expand. As the balloon inflates, the stars and galaxies drift apart so that an ant walking on the surface of the balloon would have to travel farther to go from one "star" to another. A similar situation exists in our real universe: everything is drifting farther apart.

The ant lives on the surface of the balloon, a two-dimensional world. The ant is unaware of the third dimension that you and I can see when we look at the balloon. The only directions that the ant can move in are along the balloon's surface. The ant can't point toward the center of the balloon because that's not along the surface that the ant perceives. To the ant, the balloon has no center. It lives in a continuous, homogeneous world, which has the weird property that if you walk far enough in any direction, you return to where you started.

Similarly, we see our universe as a three-dimensional world. If there are spatial dimensions beyond three, we are unaware of them. The only directions that we can move in are along the three dimensions of the universe that we perceive. The overall structure of the universe is still not fully understood, but let's suppose that the universe is a simple closed structure like the surface of a higher-dimensional balloon. In that case, we wouldn't be able to point to a center either because that center would exist in a dimension that we don't perceive. To us, the universe would be a continuous, homogeneous structure with that same weird property: if you traveled far enough in one direction, you'd return to where you started.

1502. Why is it easy to stay on a bike while moving, but impossible once it stops? - AS, Switzerland
A bicycle is my favorite example of a dynamically stable object. Although the bicycle is unstable at rest (statically unstable), it is wonderfully stable when moving forward (dynamically stable). To understand this distinction, let's start with the bicycle motionless and then start moving forward.

At rest, the bicycle is unstable because it has no base of support. A base of support is the polygon formed by an object's contact points with the ground. For example, a table has a square or rectangular base of support defined by its four legs as they touch the floor. As long as an object's center of gravity (the effective location of its weight) is above this base of support, the object is statically stable. That stability has to do with the object's increasing potential (stored) energy as it tips-tipping a statically stable object raises its center of gravity and gravitational potential energy, so that it naturally accelerates back toward its upright position. Since a bicycle has only two contact points with the ground, the base of support is a line segment and the bicycle can't have static stability.

But when the bicycle is heading forward, it automatically steers its wheels underneath its center of gravity. Just as you can balance a broom on you hand if you keep moving your hand under the broom's center of gravity, a bicycle can balance if it keeps moving its wheels under its center of gravity. This automatic steering has to do with two effects: gyroscopic precession and bending of the bicycle about its steering axis.

In the gyroscopic precession steering, the spinning wheel behaves as a gyroscope. It has angular momentum, a conserved quantity of motion associated with spinning, and this angular momentum points toward the left (a convention that you can understand by pointing the curved fingers of your right hand around in the direction of the tire's motion; your thumb will then point to the left). When the bicycle begins to lean to one side, for example to the left, the ground begins to twist the front wheel. Since the ground pushes upward on the bottom of that wheel, it tends to twist the wheel counter-clockwise according to the rider. This twist or torque points toward the rear of the bicycle (again, when the fingers of your right hand arc around counterclockwise, your thumb will point toward the rear). When a rearward torque is exerted on an object with a leftward angular momentum, that angular momentum drifts toward the left-rear. In this case, the bicycle wheel steers toward the left. While I know that this argument is difficult to follow, since angular effects like precession challenge even first-year physics graduate students, but the basic result is simple: the forward moving bicycle steers in the direction that it leans and naturally drives under its own center of gravity. You can see this effect by rolling a coin forward on a hard surface: it will automatically balance itself by driving under its center of gravity.

In the bending effect, the leaning bicycle flexes about its steering axis. If you tip a stationary bicycle to the left, you see this effect: the bicycle will steer toward the left. That steering is the result of the bicycle's natural tendency to lower its gravitational potential energy by any means possible. Bending is one such means. Again, the bicycle steers so as to drive under its own center of gravity.

These two automatic steering effects work together to make a forward moving bicycle surprisingly stable. Children's bicycles are designed to be especially stable in motion (for obvious reasons) and one consequence is that children quickly discover that they can ride without hands. Adult bicycles are made less stable because excessive stability makes it hard to steer the bicycle.

1503. I understand now why the sky is blue, but why are sunsets red and orange? - AB, Oak Ridge, Tennessee
As I discussed previously, the sky is blue because tiny particles in the atmosphere (dust, clumps of air molecules, microscopic water droplets) are better at deflecting shorter wavelength blue light than they are at deflecting longer wavelength red light. As sunlight passes through the atmosphere, enough blue light is deflected (or more technically Rayleigh scattered) by these particles to give the atmosphere an overall blue glow. The sun itself is slightly reddened by this process because a fraction of its blue light is deflected away before it reaches our eyes.

But at sunrise and sunset, sunlight enters our atmosphere at a shallow angle and travels a long distance before reaching our eyes. During this long passage, most of the blue light is deflected away and virtually all that we see coming to us from the sun is its red and orange wavelengths. The missing blue light illuminates the skies far to our east during sunrise and to our west during sunset. When the loss of blue light is extreme enough, as it is after a volcanic eruption, so little blue light may reach your location at times that even the sky itself appears deep red. The particles in air aren't good at deflecting red wavelengths, but if that's all the light there is they will give the sky a dim, red glow.

1504. Is it possible to heat up the surface of a stealth aircraft by exposing it to strong microwaves? Also, I heard that local forces in the recent Balkans conflict used cellular phone technology to down the U.S. stealth aircraft. Is that possible? - JG
Stealth aircraft are designed to absorb most of the microwave radiation that hits them and to reflect whatever they don't absorb away from the microwave source. That way, any radar system that tries to see the aircraft by way of its microwave reflection is unlikely to detect anything returning from the aircraft. In effect, the stealth aircraft is "black" to microwaves and to the extent that it has any glossiness to its surfaces, those surfaces are tipped at angles that don't let radar units see that glossiness. Since most radar units emit bright bursts of microwaves and look for reflections, stealth aircraft are hard to detect with conventional radar. Just as you can't see a black bat against the night sky by shining a flashlight at it, you can't see a stealth aircraft against the night sky by shining microwaves at it.

Like any black object, the stealth aircraft will heat up when exposed to intense electromagnetic waves. But trying to cook a stealth aircraft with microwaves isn't worth the trouble. If someone can figure out where it is enough to focus intense microwaves on it, they can surely find something better with which to damage it.

As for detecting the stealth aircraft with the help of cell phones, that brings up the issue of what is invisibility. Like a black bat against the night sky, it's hard to see a stealth aircraft simply by shining microwaves at it. Those microwaves don't come back to you so you see no difference between the dark sky and the dark plane. But if you put the stealth aircraft against the equivalent of a white background, it will become painfully easy to see. Cell phones provide the microwave equivalent of a white background. If you look for microwave emission near the ground from high in the sky, you'll see microwaves coming at you from every cell phone and telephone tower. If you now fly a microwave absorbing aircraft across that microwave-rich background, you'll see the dark image as it blocks out all these microwave sources. Whether or not this effect was used in the Balkans, I can't say. But it does point out that invisibility is never perfect and that excellent camouflage in one situation may be terrible in another.

1505. I have noticed that the more I stir the milk into my coffee, the hotter it gets, even though the milk is cold. How does it work?
Stirring the coffee involves a transfer of energy from you to the coffee. That's because you are doing physical work on the coffee by pushing it around as it moves in the direction of your push. What began as chemical energy in your body becomes thermal energy in the coffee. That said, the amount of thermal energy you can transfer to the coffee with any reasonable amount of stirring is pretty small and you'd lose patience with the process long before you achieved any noticeable rise in coffee temperature. I think that the effect you notice is more one of mixing than of heating. Until you mix the milk into the coffee, you may have hot and cold spots in your cup and you may notice the cold spots most strongly.

1506. I teach a class on safety helmets (hard hats) and had a question about one of their specifications. The manufacturer rates their crown impact energy level at 40 foot-pounds. Would this be equivalent to taking an object that weighs 20 pounds and dropping it 2 feet onto a hard hat? - AH
Assuming that the wearer doesn't let the helmet move and that the object that hits the helmet is rigid, my answer is approximately yes. If a 20-pound rigid object hits the hat from a height of 2 feet, that object will transfer just over 40 foot-pounds of energy to the helmet in the process of coming to a complete stop. The "just over" has to do with the object's continued downward motion as it dents the hat and the resulting release of additional gravitational potential energy. Also, the need for a rigid dropped object lies in a softer object's ability to absorb part of the impact energy itself; a dropped 20-pound sack of flour will cause less damage than a dropped 20-pound anvil.

However, the true meaning of the "40 foot-pound" specification is that the safety helmet is capable of absorbing 40 foot-pounds of energy during an impact on its crown. This energy is transferred to the helmet by doing work on it: by pushing its crown downward as the crown dents downward. The product of the downward force on the crown times the distance the crown moves downward gives the total work done on the helmet and this product must not exceed 40 foot-pounds or the helmet may fail to protect the wearer. Since the denting force typically changes as the helmet dents, this varying force must be accounted for in calculating the total work done on the helmet. While I'm not particularly familiar with safety helmets, I know that bicycle helmets don't promise to be useable after absorbing their rated energies. Bicycle helmets contain energy-absorbing foam that crushes permanently during severe impacts so that they can't be used again. Some safety helmets may behave similarly.

Finally, an object dropped from a certain height acquires an energy of motion (kinetic energy) equal to its weight times the height from which it was dropped. As long as that dropped object isn't too heavy and the helmet it hits dents without moving overall, the object's entire kinetic energy will be transferred to the helmet. That means that a 20-pound object dropped from 2 feet on the helmet will deposit 40 found-pounds of energy in the helmet. But if the wearer lets the helmet move downward overall, some of the falling object's energy will go into the wearer rather than the helmet and the helmet will tolerate the impact easily. On the other hand, if the dropped object is too heavy, the extra gravitational potential energy released as it dents the helmet downward will increase the energy transferred to the helmet. Thus a 4000-pound object dropped just 1/100th of a foot will transfer much more than 40 foot-pounds of energy to the helmet.

1507. Ever since someone struck and damaged the rear bumper of my SAAB 9-3, the air pressure inside the car has been unbearable to myself and passengers. It causes ear pain and nausea after around 15 minutes of driving. The only solution is to open the windows. Can you think of any structural aspect that may cause a problem like this? - TA
I suspect that the air inside the car is vibrating the way it does inside an organ pipe or in a soda bottle when you blow carefully across the bottle's lip. This resonant effect is common in cars when one rear passenger window is opened slightly. In that case, air blowing across the opening in the window is easily deflected into or out of the opening and drives the air in the passenger compartment into vigorous vibration. In short, the car is acting like a giant whistle and because of its enormous size, its pitch is too low for you to hear. Instead, you feel the vibration as a sickening pulsation in the air pressure.

For the one-open-window problem, the solution is simple: open another window. That shifts the resonant frequency of the car's air and also helps to dampen the vibrations. Alternatively, you can close the opened window. In your case, the resonance appears to involve a less visible opening into the car, perhaps near the rear bumper. If you can close that leak, you may be able to stop the airflow from driving the air in the car into resonance. If you are unable to find the leak, your best bet is to do exactly what you've done: open another window.

1508. I don't want to sound like I know everything in the world or even like I know quite a lot. But you had a question regarding "If a microwave oven door were to open while it was still on, what would happen? Could it hurt you?- JP"

Well ..Having the thought process that I have, kinda how should I put it? ...Stupid? or inventive or even in-between. Well, my microwave door did happen to come off. Magic Chef 900-watt microwave. Well, I did my best to try to fix it but the hinge on one side did not attach properly, therefore having a gap between the door and the appliance. Being me (stupid) I wondered if it would burn fast or would it gradually warm up. I slid my finger between...You probably dying to hear what happened... But it didn't gradually warm up at all. It was instant heat! It didn't scar me or anything like that, but sure scared the H*** out of me to find out it got so hot so quick. I didn't get any blisters either. But it just burned like touching something hot on the tip of my finger being that is the only thing I put in. Well you know the old adage, "You learn from your mistakes", stands true. lol - Anonymous

What a remarkable story! As much as I like to think I can predict what should happen in many cases, there is just nothing like a good experiment to bring some reality to the situation. Your microwave evidently sent a significant fraction of its 900 watts of microwave radiation through that crack between cooking chamber and door and roasted your finger instantly. This is a good cautionary tale for those who are careless or curious with potentially dangerous household gadgets. While I continue to think that serious injuries are unlikely even in a leaky microwave oven, you have shown that there are cases of real danger. Fortunately, you had time to snap you finger away. It's like Class 3 lasers, which are now common in the form of laser pointers and supermarket checkout systems: they can damage your vision if you stare into them, but your blink reflex is fast enough to keep you from suffering injury. Thanks for the anecdote and I'm glad your finger recovered.

1509. About 18 months ago, I saw an episode on "Current Affairs," in Australia, in which this dude made a "free electricity" machine, using magnets, fixed and non fixed-on a spinning wheel. While I know that I should be skeptical, I can't help thinking "what if?" Have scientists carefully tested this stuff to see for sure that it does or does work? - P, Australia
Not surprisingly, no "free electricity" machines are ever released to real scientists for testing. That's because the results of such testing are certain: those machines simply can't work for very fundamental and incontrovertible reasons.

Like so many "scientific" conmen, the purveyors of this particular scam claim to be victims of a hostile scientific establishment, which refuses to accept their brilliant discoveries. They typically attack the deepest and most central tenets of science and claim that a conspiracy is perpetuating belief on those tenets. Their refusal to submit their work to scientific peer review is supposedly based on a fear that such review will be biased and subjective, controlled by the conspiracy.

The sad reality is that the "scientific establishment" is more than willing to examine the claims, but those claims won't survive the process of inspection. In some cases, the authors of the claims are truly self-deluded and are guilty only of pride and ignorance. But in other cases, the authors are real conmen who are out to make a buck at public expense. They should be run out of town on a rail. >

1510. If you have a deck that is snow covered with a very light, fluffy snow, and no one touches it, but in the next few days, from the sun, or whatever, the snow becomes "heavier" to move, does it actually weigh more? — PP
As the snow settles and becomes denser, it may feel "heavier", but its total weight doesn't change much. The same water molecules are simply packing themselves into a smaller space. So while each shovel-full of the dense stuff really does weigh more than a shovel-full of the light stuff, the total number of water molecules present on your deck and their associated weight is still the same.

In actually, some of the water molecules have almost certainly left via a form of solid-to-gas evaporation known technically as "sublimation." You have seen this conversion of ice into gas when you have noticed that old ice cubes in your freezer are smaller than they used to be or when you see that the snow outside during a cold spell seems to vanish gradually without ever melting. Sublimation is also the cause of "freezer burn" for frozen foods left without proper wrapping.

www.HowEverythingWorks.org