How Everything Works
How Everything Works How Everything Works

Site Map
At UVa:
How Everything Works  
Page 143 of 160 (1595 Questions and Answers)

1421. How is sound picked up on a microphone? — PB, Marion, MA
Sound consists of small fluctuations in air pressure. We hear sound because these changes in air pressure produce fluctuating forces on various structures in our ears. Similarly, microphones respond to the changing forces on their components and produce electric currents that are effectively proportional to those forces.

Two of the most common types of microphones are capacitance microphones and electromagnetic microphones. In a capacitance microphone, opposite electric charges are placed on two closely spaced surfaces. One of those surfaces is extremely thin and moves easily in response to changes in air pressure. The other surface is rigid and fixed. As a sound enters the microphone, the thin surface vibrates with the pressure fluctuations. The electric charges on the two surfaces pull on one another with forces that depend on the spacing of the surfaces. Thus as the thin surface vibrates, the charges experience fluctuating forces that cause them to move. Since both surfaces are connected by wires to audio equipment, charges move back and forth between the surfaces and the audio equipment. The sound has caused electric currents to flow and the audio equipment uses these currents to record or process the sound information.

In an electromagnetic microphone, the fluctuating air pressure causes a coil of wire to move back and forth near a magnet. Since changing or moving magnetic fields produce electric fields, electric charges in the coil of wire begin to move as a current. This coil is connected to audio equipment and again uses these currents to represent sound.

1422. How does a heat pipe work? — SG, Sugar Land TX
Heat pipes use evaporation and condensation to move heat quickly from one place to another. A typical heat pipe is a sealed tube containing a liquid and a wick. The wick extends from one end of the tube to the other and is made of a material that attracts the liquid—the liquid "wets" the wick. The liquid is called the "working fluid" and is chosen so that it tends to be a liquid the temperature of the colder end of the pipe and tends to be a gas at the temperature of the hotter end of the pipe. Air is removed from the pipe so the only gas it contains is the gaseous form of the working fluid.

The pipe functions by evaporating the liquid working fluid into gas at its hotter end and allowing that gaseous working fluid to condense back into a liquid at its colder end. Since it takes thermal energy to convert a liquid to a gas, heat is absorbed at the hotter end. And because a gas gives up thermal energy when it converts from a gas to a liquid, heat is released at the colder end.

After a brief start-up period, the heat pipe functions smoothly as a rapid conveyor of heat. The working fluid cycles around the pipe, evaporating from the wick at the hot end of the pipe, traveling as a gas to the cold end of the pipe, condensing on the wick, and then traveling as a liquid to the hot end of the pipe.

Near room temperature, heat pipes use working fluids such as HFCs (hydrofluorocarbons, the replacements for Freons), ammonia, or even water. At elevated temperatures, heat pipes often use liquid metals such as sodium.

1423. If you were at the back of a bus going the speed of light, and you were to run toward the front, would you be moving faster than the speed of light or turn into energy? — TM, Ft. Bragg, NC
First, your bus can't be going at the speed of light because massive objects are strictly forbidden from traveling at that speed. Even to being traveling near the speed of light would require a fantastic expenditure of energy.

But suppose that the bus were traveling at 99.999999% of the speed of light and you were to run toward its front at 0.000002% of the speed of light (about 13 mph or just under a 5 minute mile). Now what would happen?

First, the bus speed I quoted is in reference to some outside observer because the seated passengers on the bus can't determine its speed. After all, if the shades are pulled down on the bus and it's moving at a steady velocity, no one can tell that it's moving at all. So let's assume that the bus speed I gave is according to a stationary friend who is watching the bus zoom by from outside.

While you are running toward the front of the bus at 0.000002% of the speed of light, your speed is in reference to the other passengers in the bus, who see you moving forward. The big question is what does you stationary friend see? Actually, your friend sees you running toward the front of the bus, but determines that your personal speed is only barely over 99.999999%. The two speeds haven't added the way you'd expect. Even though you and the bus passengers determine that you are moving quickly toward the front of the bus, your stationary friend determines that you are moving just the tiniest bit faster than the bus. How can that be?

The answer lies in the details of special relativity, but here is a simple, albeit bizarre picture. Your stationary friend sees a deformed bus pass by. Ignoring some peculiar optical effects due to the fact that it takes time for light to travel from the bus to your friend's eyes so that your friend can see the bus, your friend sees a foreshortened bus—a bus that is smashed almost into a pancake as it travels by. While you are in that pancake, running toward the front of the bus, the front is so close to the rear that your speed within the bus is miniscule. Why the bus becomes so short is another issue of special relativity.

1424. Is the total energy savings still significant for long tube fluorescent lights, as compared to incandescent lights, when you consider the energy involved in manufacturing all the components of the lights? — AB, San Antonio, TX
Yes, fluorescents are more energy efficient overall. To begin with, fluorescent lights have a much longer life than incandescent lights—the fluorescent tube lasts many thousands of hours and its fixture lasts tens of thousands of hours. So the small amount of energy spent building an incandescent bulb is deceptive—you have to build a lot of those bulbs to equal the value of one fluorescent system.

Second, although there is considerable energy consumed in manufacturing the complicated components of a fluorescent lamp, it's unlikely to more than a few kilowatt-hours—the equivalent of the extra energy a 100 watt incandescent light uses up in a week or so of typical operation. So it may take a week or two to recover the energy cost of building the fluorescent light, but after that the energy savings continue to accrue for years and years.

1425. We know that ozone can be depleted in the atmosphere as a result of various man-made factors. What would happen if nitrogen were depleted? What man-made influences, if any, would deplete nitrogen? — BS, Los Angeles
Ozone is an unstable molecule that consists of three oxygen atoms rather than then usual two. Because of its added complexity, an ozone molecule can interact with a broader range of light wavelengths and has the wonderful ability to absorb harmful ultraviolet light. The presence of ozone molecules in our upper atmosphere makes life on earth possible.

However, because ozone molecules are chemically unstable, they can be depleted by contaminants in the air. Ozone molecules react with many other molecules or molecular fragments, making ozone useful as a bleach and a disinfectant. Molecules containing chlorine atoms are particularly destructive of ozone because a single chlorine atom can facilitate the destruction of many ozone molecules through a chlorine recycling process.

In contrast, nitrogen molecules are extremely stable. They are so stable that there are only a few biological systems that are capable of separating the two nitrogen atoms in a nitrogen molecule in order to create organic nitrogen compounds. Without these nitrogen-fixing organisms, life wouldn't exist here. Because nitrogen molecules are nearly unbreakable, they survive virtually any amount or type of chemical contamination.

1426. What properties of rubber change in order to make one ball bounce better than another? — JM
During a bounce from a rigid surface, the ball's surface dents. Denting a surface takes energy and virtually all of the ball's energy of motion (kinetic energy) goes into denting its own surface. For a moment the ball is motionless and then it begins to rebound. As the ball undents, it releases energy and this energy becomes the ball's new energy of motion.

The issue is in how well the ball's surface stores and then releases this energy. The ideal ball experiences only elastic deformation—the molecules within the ball do not reorganize at all, but only change their relative spacings during the dent. If the molecules reorganize—sliding across one another or pulling apart in places—then some of the denting energy will be lost due to internal friction-like effects. Even if the molecules slide back to their original positions, they won't recover all the energy and the ball won't bounce to its original height.

In general, harder rubber bounces more efficiently than softer rubber. That's because the molecules in hard rubber are too constrained to be able to slide much. A superball is very hard and bounces well. But there are also sophisticated thermal effects that occur in some seemingly hard rubbers that cause them to lose their stored energy.

1427. As part of Math and Science night at her school, my 4th grade daughter recently made ice cream. How did the milk, ice, salt, and mechanical motion work together to make ice cream? — DH
To make good ice cream, you want to freeze the cream in such a way that the water in the cream forms only very tiny ice crystals. That way the ice cream will taste smooth and creamy. The simplest way to achieve this goal is to stir the cream hard while lowering its temperature far enough to freeze the water in it and to make the fat solidify as well. That's where the ice and salt figure in.

By itself, melting ice has a temperature of 0° C (32° F). When heat flows into ice at that temperature, the ice doesn't get hotter, it just transforms into water at that same temperature. Separating the water molecules in ice to form liquid water takes energy and so heat must flow into the ice to make it melt.

But if you add salt to the ice, you encourage the melting process so much that the ice begins to use its own internal thermal energy to transform into water. The temperature of the ice drops well below 0° C (32° F) and yet it keeps melting. Eventually, the drop in temperature stops and the ice and salt water reach an equilibrium, but the mixture is then quite cold—perhaps -10° C (14° F) or so. To melt more ice, heat must flow into the mixture. When you place liquid cream nearby, heat begins to flow out of the cream and into the ice and salt water. More ice melts and the liquid cream get colder. Eventually, ice cream starts to form. Stirring keeps the ice crystals small and also ensures that the whole creamy liquid freezes uniformly.

1428. How does a dehumidifier work? - S, Hong Kong
A dehumidifier makes use of the fact that water tends to be individual gas molecules in the air at higher temperatures but condensed liquid molecules on surfaces at lower temperatures. At its heart, a dehumidifier is basically a heat pump, one that transfers heat from one surface to another. Its components are almost identical to those in an air conditioner or refrigerator: a compressor, a condenser, and an evaporator. The evaporator acts as the cold surface, the source of heat, and the condenser acts as the hot surface, the destination for that heat.

When the unit is operating and pumping heat, the evaporator becomes cold and the condenser becomes hot. A fan blows warm, moist air from the room through the evaporator coils and that air's temperature drops. This temperature drop changes the behavior of water molecules in the air. When the air and its surroundings were warm, any water molecule that accidentally bumped into a surface could easily return to the air. Thus while water molecules were always landing on surfaces or taking off, the balance was in favor of being in the air. But once the air and its surroundings become cold, any water molecules that bump into a surface tend to stay there. Water molecules are still landing on surfaces and taking off, but the balance is in favor of staying on the surface as either liquid water or solid ice. That's why dew or frost form when warm moist air encounters cold ground. In the dehumidifier, much of the air's water ends up dripping down the coils of the evaporator into a collection basin.

All that remains is for the dehumidifier to rewarm the air. It does this by passing the air through the condenser coils. The thermal energy that was removed from the air by the evaporator is returned to it by the condenser. In fact, the air emerges slightly hotter than before, in part because it now contains all of the energy used to operate the dehumidifier and in part because condensing moisture into water releases energy. So the dehumidifier is using temperature changes to separate water and air.

1429. I saw a magic show where they put a needle through a balloon. I tried this and it worked, but only with latex material balloons. I want to do my science project on this but my teacher said it was not a good idea. I think that it is because it is science, not magic. What do you think? — J, 6th Grade
It is science. The needle is able to enter latex without tearing it because the latex molecules are stretching out of the way of the needle without breaking. Like all polymers (plastics), latex consists of very large molecules. In latex, these molecules are basically long chains of atoms that are permanently linked to one another at various points along their lengths. You can picture a huge pile of spaghetti with each pasta strand representing one latex molecule. Now picture little links connecting pairs of these strands at random, so that when you try to pick up one strand, all the other strands come with it. That's the way latex looks microscopically. You can't pull the strands of latex apart because they are all linked together. But you can push a spoon between the strands.

That is what happens when you carefully weave a needle into a latex balloon—the needle separates the polymer strands locally, but doesn't actually pull them apart or break them. Since breaking the latex molecules will probably cause the balloon to tear and burst, you have to be very patient and use a very sharp needle. I usually oil the needle before I do this and I don't try to insert the needle in the most highly stressed parts of the balloon. The regions near the tip of the balloon and near where it is filled are the least stressed and thus the easiest to pierce successfully with a needle. A reader has informed me that coating the needle with Vasoline is particularly helpful.

One final note: a reader pointed out that it is also possible to put a needle through a balloon with the help of a small piece of adhesive tape. If you put the tape on a patch of the inflated balloon, it will prevent the balloon from ripping when you pierce the balloon right through the tape. This "cheaters" approach is more reliable than trying to thread the needle between the latex molecules, but it's less satisfying as well. But it does point out the fact that a balloon bursts because of tearing and that if you prevent the balloon from tearing, you can pierce it as much as you like.

1430. My 5 year old wants to do his kindergarten science project on "why do balls bounce?" His hypothesis is that "balls bounce because of the stuff inside." Can you advise how best to test this hypothesis and explain this concept on a level that a bright, but still only 5 year old, can truly understand? — MS, Bayside, New York
I'd suggest finding a hollow rubber ball with a relatively thin, flexible skin and putting different things inside it. You can just cut a small hole and tape it over after you put in "the stuff." Compare the ball's bounciness when it contains air, water, shaving cream, beans, rice, and so on. Just drop it from a consistent height and see how high it rebounds. The ratio of its rebound height to its drop height is a good measure of how well the ball stores energy when it hits the ground and how well it uses that energy to rebound. A ball that bounces to full height is perfect at storing energy while a ball that doesn't bounce at all is completely terrible at storing energy. You'll get something in between for most of your attempts—indicating that "the stuff" is OK but not perfect at storing energy during the bounce. The missing energy isn't destroyed, it's just turned into thermal energy. The ball gets a tiny bit hotter with every bounce.

You won't get any important quantitative results from this sort of experiment, but it'll be fun anyway. I wonder what fillings will make the ball bounce best or worst?
The How Everything Works Home Page
The Complete Collection of Questions (160 pages, from oldest to newest):
Previous 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 Next 
Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy