How Everything Works   Page 13 of 160 (1595 Questions and Answers) Printer Friendly Version

121. Why is there a relationship between speed and pressure? What is that relation? Why are they inverses of each other?
When a fluid is flowing smoothly and steadily through a stationary environment, its energy is conserved. As long as it doesn't lose much energy to frictional effects, you can count on its total energy remaining essentially constant as it flows downstream. Since it only has three forms for its energy: gravitational potential energy, pressure potential energy, and kinetic energy, you can expect that a decrease in one of these forms of energy will be accompanied by an increase in one of the other forms. That's when speed and pressure are inversely related. When the fluid slows down, its kinetic energy drops so its pressure potential energy (and its pressure) must rise.

122. Does air create a friction force on water? Would a gutter be much quicker at having water flow through it, rather than a pipe?
Air does exert frictional forces on water, but much less than a surface would. Thus a gutter would be a better water carrier than a pipe. It would have one less surface to slow the flow of water.

123. Does super cooled helium act in a viscous or non-viscous manner?
Below 2.17 K, liquid helium behaves very differently than normal fluids. It behaves as though it were made of two intermingled fluids: one that is normal in every way and the other that is completely without viscosity. Depending on what sort of experiment you do, you will see one or the other fluid. If you swirl the liquid helium with a stick, you will see the viscous fluid component swirling and splashing. If you pour the liquid helium through a filter made of tightly packed dust, you will see the non-viscous component rushing through. No normal fluid can travel through packed dust, because its viscosity slows its travel until it doesn't move at all. But the viscosity-free component of liquid helium can flow easily through any holes, no matter how small. It can flow through holes that even helium gas has trouble passing.

124. How does Jell-O work? How come it congeals when it is cooled?
Jell-O is composed of long, stick-like molecules. When you dissolve it in hot water, those molecules separate, but as the liquid cools, they begin to stick together like a giant heap of straws. The water flows slowly through these straws because of frictional effects. The result is a stiff material that is given its structure by the straw heap. If you leave the Jell-O long enough, the water will seep out and make puddles on the plate.

125. What are vortex rings?
These rings (also called smoke rings) are moving portions of fluid that are moving relative to the surrounding fluid. They form a remarkably stable structure. The inner edge of the ring heads forward, while the outer edge head backward and the ring pulls itself through the air. Fluid dynamicists study these sorts of objects.

126. What is the difference between "thickness" and viscosity? Is viscosity just a fancy word for thickness?
Viscosity is a measurable quantity—a liquid has a specific viscosity as measured in units of poise or pascal-seconds. Thickness refers to the same characteristic as viscosity, but isn't a specific quantity. It's certainly correct to say that a thick liquid is a liquid with a large viscosity.

127. When you were showing us water faucets during class, each faucet had a corner immediately preceding the opening through which the water came out. Does that corner help slow the pressure of the water?
Most faucets do have a turn just before the water comes out and that turn is there to slow the water down. Unless the faucet is opened for maximum flow, the pressure of the water emerging from the valve part of the faucet is pretty close to atmospheric pressure, so there isn't any need to control that pressure. But the water emerging from the valve may be traveling very fast and it could easily spray across the room if there were nothing in its way. To prevent such sprays, most faucets are bent so that water spraying out of the valve will hit the bend and become turbulent. The turbulence will help it to convert its kinetic energy into thermal energy so that it will emerge from the faucet at low speed and atmospheric pressure. (Great question!—I'd never thought of this before).

128. Why does a hose squirt further when you cover the hole with your thumb?
The water entering the hose has a certain amount of energy per liter. That energy can be in one of three forms: pressure potential energy, gravitational potential energy, or kinetic energy. If you let it flow freely through the hose, most of that energy will become kinetic energy and the water will move quickly through the hose. But it will encounter frictional effects as it slides past the walls of the hose (its viscosity participates here) and it will convert much of its kinetic energy into thermal energy by the time it leaves the hose. However, if you pinch off the flow with your thumb, the water won't be able to convert its energy into kinetic form as it enters the hose. Most of the energy will remain as pressure potential energy. The water will move slowly through the hose and it will experience relatively little energy loss to frictional effects. Most of the energy will remain by the time the water reaches your thumb. Then, as the water flows past your thumb to the outside air, its pressure will drop suddenly and its energy will become kinetic energy. The water will spray out at very high speed.

129. Why is viscosity important in motor oil for today's high revving engines?
If the oil in your car is has too little viscosity, it will easily flow out of the gaps between surfaces and will not lubricate them well. Those surfaces will experience sliding friction and wear. If the oil has too much viscosity, it will waste the engine's energy by opposing motion and turning work into thermal energy. Modern motor oils have carefully adjusted viscosities that balance the two problems. Since temperature affects viscosity (e.g., hot molasses has less viscosity than cold molasses), motor oils add chemicals that stabilize their viscosities over wide temperature ranges.

130. For aerosol sprays such as Lysol, are they essentially creating "dustlike" particles that float in the air?
Yes, except that the word "float" isn't what you really mean. An aerosol is a suspension of fine solid or liquid particles in a gas. What holds those particles up against their downward weights isn't the buoyant force—these particles are much more dense than the gas that surrounds them. Instead, it's viscous drag. When the particles begin to fall downward through the gas, they experience such large upward viscous drag forces that they reach terminal velocity at only about 1 millimeter-per-second. The slightest breeze carries the particles with it so that they rarely have a chance to settle to the floor because of gravity. In an aerosol spray, the particles are carried forward by the gas emerging from the bottle and they hit the surfaces in front of the bottle.

www.HowEverythingWorks.org