How Everything Works
How Everything Works How Everything Works

Windows and Glass
Page 2 of 2 (14 Questions and Answers)

1299. Is glass in a gaseous state, a liquid state or a solid state? If I remember back to my freshman college year, it seems my prof said it was in a highly viscous state; therefore a liquid. — GC, Garland, Texas
The answer to that question is complicated—glass is neither a normal liquid nor a normal solid. While the atoms in glass are essentially fixed in place like those in a normal solid, they are arranged in the disorderly fashion of a liquid. For that reason, glass is often described as a frozen liquid—a liquid that has cooled and thickened to the point where it has become rigid. But calling glass a liquid, even a frozen one, implies that glass can flow. Liquids always respond to stresses by flowing. Since unheated glass can't flow in response to stress, it isn't a liquid at all. It's really an amorphous or "glassy" solid—a solid that lacks crystalline order.

1300. Sometimes on television a high pitched noise breaks the windows in a house. I know that tubular objects such as wine glasses will break when the frequency corresponds to the natural frequencies of the glass, but does flat sheet glass such as windows experience this same effect? — RF, Jackson, Michigan
In real life, only explosive sounds will break normal glass. That's because normal glass vibrates poorly and has no strong natural frequencies. You can see this by tapping a glass window or cup—all you hear is a dull "thunk" sound.

For an object to vibrate strongly in response to a tone, that object must exhibit a strong natural resonance and the tone's pitch must be perfectly matched to the frequency of that resonance. A crystal wineglass vibrates well and emits a clear tone when you tap it. If you listen to the pitch of that tone and then sing it loudly, you can make the wineglass vibrate. A crystal windowpane would also have natural resonances and would vibrate in response to the right tones. But it would take very loud sound at exactly the right pitch to break this windowpane. A few extraordinary voices have been able to break crystal wineglasses unassisted (i.e., without amplification) and it would take such a voice to break the crystal windowpane.

1305. I have read that very old panes of glass become thicker at the bottoms than the tops. Doesn't that show that glass flows? — MJ
While it is sometimes noted that old cathedral glass is now thicker at the bottom than at the top, such cases appear to be the result of how the glass was made, not of flow. Medieval glass was made by blowing a giant glass bubble on the end of a blowpipe or "punty" and this bubble was cut open at the end and spun into a huge disk. When the disk cooled, it was cut off the punty and diced into windowpanes. These panes naturally varied in thickness because of the stretching that occurred while spinning the bubble into a disk. Evidently, the panes were usually put in thick end down.

Modern studies of glass show that below the glass transition temperature, which is well above room temperature, molecular rearrangement effectively vanishes altogether. The glass stops behaving like a viscous liquid and becomes a solid. Its heat capacity and other characteristics are consistent with its being a solid as well.

1519. Why is a car's rear window put and kept under stress, and what has this to do with polarization? — BD, Leuven, Belgium
The rear window of a car is made of tempered glass — the glass is heated approximately to its softening temperature and then cooled abruptly to put its surface under compression, leaving its inside material under tension. That tempering process makes the glass extremely strong because its compressed surface is hard to tear. But once a tear does manage to propagate through the compressed surface layer into the tense heart of the glass, the entire window shreds itself in a process called dicing fracture — it tears itself into countless little cubes.

The stresses frozen into the tempered glass affect its polarizability and give it strange characteristics when exposed to the electromagnetic fields in light. This stressed glass tends to rotate polarizations of the light passing through it. As a result, you see odd reflections of the sky (skylight is polarized to some extent). Those polarization effects become immediately apparent when you wear polarizing sunglasses.
The Windows and Glass Home Page
The Complete Collection of Questions about Windows and Glass (2 pages, from oldest to newest):
Previous 1 2 

Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy