How Everything Works
How Everything Works How Everything Works

Page 3 of 4 (36 Questions and Answers)

1177. Why are sparks generated when iron is brought in contact with a spinning grinding wheel? — JF, Rochester, NY
When the iron touches the spinning wheel, the two experience sliding or "dynamic" friction—the iron acts to slow the wheel while the wheel acts to move the iron. Because you hold the iron in place, it doesn't move but its surface begins to experience severe wear—the iron is skidding across the surface of the wheel. Sharp projections from the wheel are tearing particles away from the iron and throwing them in the direction of the wheel surface's motion. Because the two surfaces, iron and wheel, are pushing on one another and they are moving relative to one another in the directions of their forces, they are doing physical work on one another—meaning that they are exchanging energy. This energy is actually being converted from the wheel's rotational energy into thermal energy in the iron and in the wheel, both of which become hot. You can feel similar heating by rubbing you hands against one another vigorously. The wheel's surface begins to glow red-hot and the particles that fly off the iron emerge so hot that they burn in the air. The sparks you see are the iron particles burning up. Depending on what type of iron or steel you use, you'll see different spark patterns. An expert can actually identify an alloy by this pattern.

1206. When a rear-wheel drive truck goes up a hill, do its rear wheels gain traction because of a transfer of weight to its rear wheels? I think it depends on the center of gravity, right? — DA, Issaquah, Washington
The traction a wheel experience depends largely on how hard it's being pushed into the roadway. When the truck is on level pavement, the roadway prevents the wheel from sinking into it by pushing upward on the wheel with a force called a support force. Because a wheel's traction is roughly proportional to the support force it's experiencing, the harder the wheel is pushed into the roadway, the more traction that wheel has.

Since a truck has its heavy engine in front, the front wheels bear more of its weight than the rear wheels and they experience more traction than the rear wheels. But as the truck tilts upward on the hill, the weight of its engine is born more and more by the rear wheels. In physics terms, the truck's center of gravity, which is almost over the front wheels while the truck is level, shifts to be more and more over the rear wheels as the truck tilts upward.

However, the extra weight that the rear wheels are supporting as the truck tilts doesn't improve their traction. That's because this extra weight isn't being supported entirely by support forces—much of it is being supported instead by friction between the rear wheels and the roadway. In fact, the support forces exerted by the roadway on the rear wheels to keep them from sinking into the pavement actually become weaker as the truck tilts uphill, so the truck loses traction as the tilt increases. Since traction is responsible for the friction that is also supporting the truck, the truck is in danger of slipping down the road. There is clearly a limit to how steep the roadway can get before the truck begins to slide.

1259. How do slot machines work? — DD, Thunder Bay, Ontario, Canada
A slot machine is a classic demonstration of rotational inertia. When you pull on the lever, you are exerting a torque (a twist) on the three disks contained inside the machine. These disks undergo angular acceleration—they begin turning toward you faster and faster as you complete the pull. When you stop pulling on the lever, the lever decouples itself from the disks and they continue to spin because of their rotational inertia alone—they are coasting. However, their bearings aren't very good and they experience frictional torques that gradually slow them down. They eventually stop turning altogether and then an electromechanical system determines whether you have won. Each disk is actually part of a complicated rotary switch and the positions of the three disks determine whether current can flow to various places on an electromechanical counter. That counter controls the release of coins—coins that are dropped one by one into a tray if you win. Sadly, computerized gambling machines are slowly replacing the beautifully engineered electromechanical ones. These new machines are just video games that handle money—they have little of the elegant mechanical and electromechanical physics that makes the real slot machines so interesting.

1272. I am a huge figure skating fan and was wondering if you could explain to me the physics of a triple axle jump? My friends and I are always asking ourselves how it's done. — AF
While I don't know the details of the jump, there are some basic physics issues that must be present. At a fundamental level, the skater approaches the jump in a non-spinning state, leaps into the air while acquiring a spin, spins three times in the air, lands on the ice while giving up the spin, and then leaves the jump in a non-spinning state. Most of the physics is in spin, so that's what I'll discuss.

To start herself spinning, something must exert a twist on the skater and that something is the ice. She uses her skates to twist the ice in one direction and, as a result, the ice twists her in the opposite direction. This effect is an example of the action/reaction principle known as Newton's third law of motion. Because of the ice's twist on her, she acquires angular momentum during her takeoff. Angular momentum is a form of momentum that's associated with rotation and, like normal momentum, angular momentum is important for one special reason: it's a conserved physical quantity, meaning that it cannot be created or destroyed; it can only be transferred between objects. The ice transfers angular momentum to the skater during her takeoff and she retains that angular momentum throughout her flight. She only gives up the angular momentum when she lands and the ice can twist her again.

During her flight, her angular momentum causes her to spin but the rate at which she spins depends on her shape. The narrower she is, the faster she spins. This effect is familiar to anyone who has watched a skater spin on the tip of one skate. If she starts spinning with her arms spread widely and then pulls them in so that she becomes very narrow, her rate of rotation increases dramatically. That's because while she is on the tip of one skate, the ice can't twist her and she spins with a fixed amount of angular momentum. By changing her shape to become as narrow as possible, she allows this angular momentum to make her spin very quickly. And this same rapid rotation occurs in the triple axle jump. The jumper starts the jump with arms and legs widely spread and then pulls into a narrow shape so that she spins rapidly in the air.

Finally, in landing the skater must stop herself from spinning and she does this by twisting the ice in reverse. The ice again reacts by twisting her in reverse, slowing her spin and removing her angular momentum. She skates away smoothly without much spin.

1273. What is the difference between an elastic collision and an inelastic one? How does an inelastic collision work and why?
When two objects collide with one another, they usually bounce. What distinguishes an elastic collision from an inelastic collision is the extent to which that bounce retains the objects' total kinetic energy—the sum of their energies of motion. In an elastic collision, all of the kinetic energy that the two objects had before the collision is returned to them after the bounce, although it may be distributed differently between them. In an inelastic collision, at least some of their overall kinetic energy is transformed into another form during the bounce and the two objects have less total kinetic energy after the bounce than they had before it.

Just where the missing energy goes during an inelastic collision depends on the objects. When large objects collide, most of this missing energy usually becomes heat and sound. In fact, the only objects that ever experience perfectly elastic collisions are atoms and molecules—the air molecules in front of you collide countless times each second and often do so in perfectly elastic collisions. When the collisions aren't elastic, the missing energy often becomes rotational energy or occasionally vibrational energy in the molecules. Actually, some of the collisions between air molecules are superelastic, meaning that the air molecules leave the collision with more total kinetic energy than they had before it. This extra energy came from stored energy in the molecules—typically from their rotational or vibrational energies. Such superelastic collisions can also occur in large objects, such as when a pin collides with a toy balloon.

Returning to inelastic collisions, one of the best examples is a head-on automobile accident. In that case, the collision is often highly inelastic—most of the two cars' total kinetic energy is transformed into another form and they barely bounce at all. Much of this missing kinetic energy goes into deforming and heating the metal in the front of the car. That's why well-designed cars have so called "crumple zones" that are meant to absorb energy during a collision. The last place you want this energy to go is into the occupants of the car. In fact, the occupants will do best if they transfer most of their kinetic energies into their airbags.

1338. How can a ball create thermal energy or "get hotter"?
When a ball bounces, some of its molecules slide across one another rather than simply stretching or bending. This sliding leads to a form of internal sliding friction and sliding friction converts useful energy into thermal energy. The more sliding friction that occurs within the ball, the less the ball stores energy for the rebound and the worse the ball's bounce. The missing energy becomes thermal energy in the ball and the ball's temperature increases.

1339. How do anti-lock brake systems work?
If you brake your car too rapidly, the force of static friction between the wheels and the ground will become so large that it will exceed its limit and the wheels will begin to skid across the ground. Once skidding occurs, the stopping force becomes sliding friction instead of static friction. The sliding friction force is generally weaker than the maximum static friction force, so the stopping rate drops. But more importantly, you lose steering when the wheels skid. An anti-lock braking system senses when the wheels suddenly stop turning during braking and briefly release the brakes. The wheel can then turn again and static friction can reappear between the wheel and the ground.

1340. If ball bearings create no friction, why do bearings have bearing grease as an essential ingredient?
Actually, some bearings are dry (no grease or oil) and still last a very long time. The problem is that the idea touch-and-release behavior is hard to achieve in a bearing. The balls or rollers actually slip a tiny bit as they rotate and they may rub against the sides or retainers in the bearing. This rubbing produces wear as well as wasting energy. To reduce this wear and sliding friction, most bearings are lubricated.

1341. If you walk up 10 steps, one by one, do you exert the same amount of energy if you walk up the same set of 10 steps two by two? How are energy and effort related, or are they?
Ideally, it doesn't matter how many steps you take with each step—the work you do in lifting yourself up a staircase depends only on your starting height and your ending height (assuming that you don't accelerate or decelerate in the overall process and thus change your kinetic energy, too). But there are inefficiencies in your walking process that lead you to waste energy as heat in your own body. So the energy you convert from food energy to gravitational potential energy in climbing the stairs is fixed, but the energy you use in carrying out this procedure depends on how you do it. The extra energy you use mostly ends up as thermal energy, but some may end up as sound or chemical changes in the staircase, etc.

1342. Is hydroplaning a form of sliding friction?
Not exactly. Sliding friction refers to the situation in which two surfaces slide across one another while touching. In hydroplaning, the two surfaces are sliding across one another, but they aren't touching. Instead, they're separated by a thin layer of trapped water. While hydroplaning still converts mechanical energy into thermal energy, just as sliding friction does, the lubricating effect of the water dramatically reduces the energy conversion. That's why you can hydroplane for such a long distance on the highway; there is almost no slowing force at all.

Dan Barker, one of my readers, informed me of a NASA study showing that there is a minimum speed at which a tire will begin to hydroplane and that that speed depends on the square root of the tire pressure. Higher tire pressure tends to expel the water layer and prevent hydroplaning, while lower tire pressure allows the water layer to remain in place when the vehicle is traveling fast enough. As Dan notes, a large truck tire is typically inflated to 100 PSI and resists hydroplaning at speed of up to about 100 mph. But a passanger car tire has a much lower pressure of about 32 PSI and can hydroplane at speeds somewhat under 60 mph. That's why you have to be careful driving on waterlogged pavement at highway speeds and why highway builders carefully slope their surfaces to shed rain water quickly.
The Wheels Home Page
The Complete Collection of Questions about Wheels (4 pages, from oldest to newest):
Previous 1 2 3 4 Next 

Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy