How Everything Works
How Everything Works How Everything Works

Page 9 of 9 (85 Questions and Answers)

1440. When you create lather from a piece of colored soap, why does it produce a white foam? — CLV, Brasil
The foam consists of tiny air bubbles surrounded by very thin films of soap and water. When light enters the foam, it experiences partial reflections from every film surface it enters or exits. That is because light undergoes a partial reflection whenever it changes speed (hence the reflections from windows) and the speed of light in soapy water is about 30% less than the speed of light in air. Although only about 4% of the light reflects at each entry or exit surface, the foam contains so many films that very little light makes it through unscathed. Instead, virtually all of the light reflects from film surfaces and often does so repeatedly. Since the surfaces are curved, there is no one special direction for the reflections and the reflected light is scattered everywhere. And while an individual soap film may exhibit colors because of interference between reflections from its two surfaces, these interference effects average away to nothing in the dense foam. Overall, the foam appears white—it scatters light evenly, without any preference for a particular color or direction. White reflections appear whenever light encounters a dense collection of unoriented transparent particles (e.g. sugar, salt, clouds, sand, and the white pigment particles in paint).

As for the fact that even colored soaps create only white foam, that's related to the amount of dye in the soaps. It doesn't take much dye to give bulk soap its color. Since light often travels deep into a solid or liquid soap before reflecting back to our eyes, even a modest amount of dye will selectively absorb enough light to color the reflection. But the foam reflects light so effectively with so little soap that the light doesn't encounter much dye before leaving the lather. The reflection remains white. To produce a colored foam, you would have to add so much dye to the soap that you'd probably end up with colored hands as well.

1503. I understand now why the sky is blue, but why are sunsets red and orange? - AB, Oak Ridge, Tennessee
As I discussed previously, the sky is blue because tiny particles in the atmosphere (dust, clumps of air molecules, microscopic water droplets) are better at deflecting shorter wavelength blue light than they are at deflecting longer wavelength red light. As sunlight passes through the atmosphere, enough blue light is deflected (or more technically Rayleigh scattered) by these particles to give the atmosphere an overall blue glow. The sun itself is slightly reddened by this process because a fraction of its blue light is deflected away before it reaches our eyes.

But at sunrise and sunset, sunlight enters our atmosphere at a shallow angle and travels a long distance before reaching our eyes. During this long passage, most of the blue light is deflected away and virtually all that we see coming to us from the sun is its red and orange wavelengths. The missing blue light illuminates the skies far to our east during sunrise and to our west during sunset. When the loss of blue light is extreme enough, as it is after a volcanic eruption, so little blue light may reach your location at times that even the sky itself appears deep red. The particles in air aren't good at deflecting red wavelengths, but if that's all the light there is they will give the sky a dim, red glow.

1562. Would it be possible to determine the consolidation of particles like polymer powders using a light spectrum? How? — M, United Kingdom
Yes, you can tell how fully you have consolidated a powder by the extent to which it scatters light. The more perfect the packing, the more transparent the powder becomes. It's a matter of homogeneity: the more perfect the packing, the more homogeneous the material and the easier it is for light to travel straight through it.

To understand why light scatter depends on homogeneity, consider what happens when light pass through clear particles. Even though they are clear, light still interacts with them, as evidenced by rainbows, clouds, and even the blue sky. How best to think about that interaction depends on the size of the particles. If the particles are large, like smooth beads of glass or plastic, then they exhibit the familiar refraction and reflection effects of window panes and lenses. If the particles are small, like air molecules and tiny water droplets, then they exhibit a more antenna-like interaction with light. In effect, those tiny particles occasionally absorb and reemit the light waves, particularly at the short-wavelength (i.e., blue) end of the light spectrum.

Both types of interactions are quite familiar to us. Large particles scatter light about without any color bias and exhibit a white appearance. The more surface area a collection of particles has, the more light that collection scatters. For example, a large ice crystal is clear but crushed ice or snow is white. Similarly, a bowl of water is clear but a mist of water droplets is white. Lastly, a bowl of air is clear, but a froth of air bubbles in water is white. As you can see, the transparent particles don't have to be solids or liquids to scatter light, they can even be gases!

On the other hand, truly tiny particles scatter light about according to wavelength and color. In most cases, shorter-wavelength (blue) light scatters more than longer-wavelength (red) light. That effect, known as Rayleigh scattering, is responsible for the blue sky and the red sunset.

In a nutshell then, large transparent particles appear white and tiny transparent particles appear colored (typically bluish). And the more particles there are, the more light is scattered.

Returning to your question, a loose powder of transparent particles scatters light like crazy and appears white or possible colored, depending on particle size. As you pack the powder more and more tightly together, its surfaces join together and it starts to lose the ability to scatter light; it becomes less white and more translucent. When the consolidation is almost complete, the material acquires a slightly hazy look due to scattering by the occasional voids left inside the otherwise transparent material. Finally, when the material is fully consolidated and there is no internal surface left in the powder, it is homogeneous and clear. So sending light through a packed transparent powder and measuring the amount and color of the scattered light tells you a lot about how well consolidated that powder is.

1563. I've recently heard about an experiment by Harvard that 'stopped' light in 2002. Is this really what happened? If the speed of light is supposed to be a constant c, how is it appearing stopped? — CR, Dallas, Texas
The speed of light in vacuum, as denoted by the letter c, is truly a constant of nature and one of its most influential constant at that. Even if light didn't exist, the speed of light in vacuum would. It is a key component of the relationship between space and time known as special relativity.

But while the speed of light in vacuum is a constant, the speed of light in matter isn't. Light is an electromagnetic wave and consists of electric and magnetic fields. Electric fields push on electric charge and matter contains electric charges, so light and matter interact. That interaction normally slows light down; the light gets delayed by the process of shaking the electric charges. In air, this slowing effect is tiny, less than 1 part in a thousand. In glass, plastic, or water, light is slowed by about 30 or 40%. In diamond, the interaction is strong enough to slow light by 60%. In silicon solar cells, light is slowed by 70%. And so it goes.

To really slow light down, however, you need to choose a specific frequency of light and let it interact with a material that is resonant with that light. Because a resonant material responds extremely strongly to the light's electric field, it delays the light by an enormous amount. And by choosing just the right wavelength of light to match a particular collection of resonant atoms, Lene Hau and her colleagues managed to bring light essentially to a halt. The light lingers nearly forever with the atoms in their apparatus and it barely makes any headway.

1590. Does light speed up as it gets further from the sun? The force of gravity has an effect on it, right? — JF, Ireland
Although that sounds like a simple question, it has a complicated answer. Gravity does affect light, but it doesn't affect light's speed. In empty space, light is always observed to travel at "The Speed of Light." But that remark hides a remarkable result: although two different observers will agree on how fast light is traveling, they may disagree in their perceptions of space and time.

When those observers are in motion relative to one another, they'll certainly disagree about the time and distance separating two events (say, two firecrackers exploding at separate locations). For modest relative velocities, their disagreement will be too small to notice. But as their relative motion increases, that disagreement will become substantial. That is one of the key insights of Einstein's special theory of relativity.

But even when two observers are not moving relative to one another, gravity can cause them to disagree about the time and distance separating two events. When those observers are in different gravitational circumstances, they'll perceive space and time differently. That effect is one of the key insights of Einstein's general theory of relativity.

Here is a case in point: suppose two observers are in separate spacecraft, hovering motionless relative to the sun, and one observer is much closer to the sun than the other. The closer observer has a laser pointer that emits a green beam toward the farther observer. Both observers will see the light pass by and measure its speed. They'll agree that the light is traveling at "The Speed of Light". But they will not agree on the exact frequency of the light. The farther observer will see the light as slightly lower in frequency (redder) than the closer observer. Similarly, if the farther observer sends a laser pointer beam toward the closer observer, the closer observer will see the light as slightly higher in frequency (bluer) than the farther observer.

How can these two observers agree on the speed of the beams but disagree on their frequencies (and colors)? They perceive space and time differently! Time is actually passing more slowly for the closer observer than for the farther observer. If they look carefully at each others' watches, the farther observer will see the closer observer's watch running slow and the closer observer will see the farther observer's watch running fast. The closer observer is actually aging slightly more slowly than the farther observer.

These effects are usually very subtle and difficult to measure, but they're real. The global positioning system relies on ultra-precise clocks that are carried around the earth in satellites. Those satellites move very fast relative to us and they are farther from the earth's center and its gravity than we are. Both difference affect how time passes for those satellites and the engineers who designed and operate the global positioning system have to make corrections for the time-space effects of special and general relativity.
The Sunlight Home Page
The Complete Collection of Questions about Sunlight (9 pages, from oldest to newest):
Previous 1 2 3 4 5 6 7 8 9 

Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy