How Everything Works
How Everything Works How Everything Works

Page 8 of 9 (85 Questions and Answers)

1121. What is sonar? — BK, Australia
Sonar stands for "sound navigation ranging" and involves the bouncing of sound waves from objects to determine where those objects are. It's based on the reflection of sound waves from objects. Whenever a wave of any sort moves from one medium to another and experiences a change in speed (or more generally, a change in impedance), part of that wave reflects. Because sound travels much faster in solids than it does in air, some sound reflects when it moves from air to rock—which is why you hear echoes when you yell at a mountain! But even more subtle changes in the speed of sound will cause modest reflections. Thus a sophisticated sound generator and receiver can detect objects immersed in water or buried in the ground. Another form of sonar is used in medical imaging—ultrasonic imaging.

1129. What path does sunlight follow for you to see a mirage? — XF
The first step in explaining a mirage is to understand why the sky is blue, or why it has any color at all. If it weren't for the earth's atmosphere, the sky would be black and dotted with stars. That's how the moon's sky appears. But the earth's atmosphere deflects some of the sunlight that passes through it, particularly short-wavelength light such as blue and violet, and this scattered light (Rayleigh scattering) gives the sky its bluish cast. When you look at the blue sky, you're seeing particles of light that have been scattered away from their original paths into new paths so that they reach your eyes from all directions.

The blue light from the sky normally travels directly toward your eyes so that you see it coming from the sky. But when there is a layer of very hot air near the ground in the distance, some of the blue light from the sky in front of you bends upward toward your eyes. This light was traveling toward the ground in front of you at a very shallow angle but it didn't hit the ground. Instead, its entry into the hot air layer bent it upward so that it arced away from the ground and toward your eyes. When you look at the ground far in front of you, you see this deflected light from the blue sky turned up at you by the air and it looks as though it has reflected from a layer of water in front of you. This bending of light that occurs when light goes from higher-density cold air to lower-density hot air is called refraction, the same effect that bends light as light enters a camera lens or a raindrop or a glass of water. Whenever light changes speeds, it can experience refraction and light speeds up in going from cold air to hot air. In this case, the light bends upward, missing the ground and eventually reaching your eyes.

1149. Can light be bent by electric fields, magnetic fields, and gravity fields? If so, can these fields be made to make light travel in a circle? — RS
Light consists of electromagnetic waves, meaning that it is composed of electric and magnetic fields. While light isn't affected by other electric or magnetic fields, it is affected by gravitational fields. Like everything else in our universe, light falls when exposed to gravity. However, because light travels so fast, it's very hard to detect that it falls. The first observation of light falling in a gravitational field was made during a total eclipse in 1919 and served as dramatic confirmation of the predictions of Einstein's general theory of relativity. As for light traveling in a circle, this can occur near the surface of a black hole. When light traveling tangent to the surface of the black hole falls at just the right rate, it will orbit the black hole indefinitely.

1193. How does the "night vision" mode of the car rear view mirror work? — P
The glass in the rear view mirror is cut so that it forms a thin wedge—it's thicker at the top than it is at the bottom. Its back surface is fully mirrored by a layer of aluminum. For daytime use, the mirror is oriented so that light from behind the car enters the glass, reflects from the layer of aluminum on the back surface, and returns through the glass to your eyes.

But when you tip the mirror upward for night use, the mirrored back surface presents you only with a view of the car's darkened ceiling. However, there is a weak second reflection from the clear front surface of the mirror—whenever light changes speeds, as it does upon entering the glass, some of that light reflects. About 4% of the light striking the front surface of the mirror from behind the car reflects without entering the glass and is directed toward your eyes. Since the image you see is about 25 times dimmer than normal, it doesn't blind you the way a reflection from the mirrored surface would.

1215. Why is a rainbow in an arch? Does it have something to do with an equal distance from me to the raindrops and if so, is the arc really a parabola? — MM, Seattle, WA
A rainbow is truly circular, not parabolic. Passing through the exact center of that circle is the line that runs between the sun and your head. Each colored arc of the rainbow is located at a particular angle away from this line—the red arc is farther from the line than the violet arc is.

1240. How does the carbon in an organic material affect the flow of light through it? — TM
When light passes into a material, it interacts primarily with the negatively charged electrons in that material. Since light consists in part of electric fields and electric fields push on charged particles, light pushes on electrons. If the electrons in a material can't move long distances and can't shift from one quantum state to another as the result of the light forces, then all that will happen to the light as it passes through the material is that it will be delayed and possibly redirected. But if the electrons in the material can move long distance or shift between states, then there is the chance that the light will be absorbed by the material and that the light energy will become some other type of energy inside the material.

Which of these possibilities occurs in a particular organic material depends on the precise structure of that material. Carbon atoms can be part of transparent organic materials, such as sugar, or of opaque organic materials, such as asphalt. The carbon atoms and their neighbors determine the behaviors of their electrons and these electrons in turn determine the optical properties of the materials.

1241. I once saw a green sunrise. Can you explain this?
Apparently there are conditions in which green light from the sun is bent by the atmosphere so that it is visible first as the sun begins to rise above the horizon. Instead of seeing the yellow edge of the sun peaking up from behind the water or land, you see a green edge that lasts a second or two before being replaced by the usual yellow. This green flash is the result of refraction (bending of light) and dispersion (color-dependent light-speed) in air and is discussed in considerable detail at According to the author of that site, Andrew Young, given a low enough horizon, which is the primary consideration, and clear air, which is also important, and a little optical aid, which helps a lot, one can certainly see green flashes at most sunsets.

1304. I understand that light waves cause electrically charged particles in matter to vibrate so that these particles can absorb and reemit light, even in transparent materials. But doesn't that explanation contradict quantum theory, which states that only specific photons corresponding to allowed electronic transitions can be absorbed? — GS, Akron, OH
When a light wave passes through matter, the charged particles in that matter do respond—the light wave contains an electric field that pushes on electrically charged particles. But how a particular charged particle responds to the light wave depends on the frequency of the light wave and on the quantum states available to the charged particle. While the charged particle will begin to vibrate back and forth at the light wave's frequency and will begin to take energy from the light wave, the charged particle can only retain this energy permanently if doing so will promote it to another permanent quantum state. Since light energy comes in discrete quanta known as photons and the energy of a photon depends on the light's frequency, it's quite possible that the charged particle will be unable to absorb the light permanently. In that case, the charged particle will soon reemit the light.

In effect, the charged particle "plays" with the photon of light, trying to see if it can absorb that photon. As it plays, the charged particle begins to shift into a new quantum state—a "virtual" state. This virtual state may or may not be permanently allowed. If it is, it's called a real state and the charged particle may remain in it indefinitely. In that case, the charged particle can truly absorb the photon and may never reemit it at all. But if the virtual state turns out not to be a permanently allowed quantum state, the charged particle can't remain in it long and must quickly return to its original state. In doing so, this charged particle reemits the photon it was playing with. The closer the photon is to one that it can absorb permanently, meaning the closer the virtual quantum state is to one of the real quantum states, the longer the charged particle can play with the photon before recognizing that it must give the photon up.

A colored material is one in which the charged particles can permanently absorb certain photons of visible light. Because this material only absorbs certain photons of light, it separates the components of white light and gives that material a colored appearance.

A transparent material is one in which the charged particles can't permanently absorb any photons of visible light. While these charged particles all try to absorb the visible light photons, they find that there are no permanent quantum states available to them when they do. Instead, they play with the photons briefly and then let them continue on their way. This playing process slows the light down. In general blue light slows down more than red light in a transparent material because blue light photons contain more energy than red light photons. The charged particles in the transparent material do have real permanent states available to them, but to reach those states, the charged particles would have to absorb high-energy photons of ultraviolet light. While blue photons don't have as much energy as ultraviolet photons, they have more energy than red photons do. As a result, the charged particles in a transparent material can play with a blue photon longer than they can play with a red photon—the virtual state produced by a blue photon is closer to the real states than is the virtual state produced by a red photon. Because of this effect, the speed at which blue light passes through a transparent material is significantly less than the speed at which red light passes through that material.

Finally, about quantum states: you can think of the real states of one of these charged particles the way you think about the possible pitches of a guitar string. While you can jiggle the guitar string back and forth at any frequency you like with your fingers, it will only vibrate naturally at certain specific frequencies. You can hear these frequencies by plucking the string. If you whistle at the string and choose one of these specific frequencies for your pitch, you can set the string vibrating. In effect, the string is absorbing the sound wave from your whistle. But if you whistle at some other frequency, the string will only play briefly with your sound wave and then send it on its way. The string playing with your sound waves is just like a charged particle in a transparent material playing with a light wave. The physics of these two situations is remarkably similar.

1425. We know that ozone can be depleted in the atmosphere as a result of various man-made factors. What would happen if nitrogen were depleted? What man-made influences, if any, would deplete nitrogen? — BS, Los Angeles
Ozone is an unstable molecule that consists of three oxygen atoms rather than then usual two. Because of its added complexity, an ozone molecule can interact with a broader range of light wavelengths and has the wonderful ability to absorb harmful ultraviolet light. The presence of ozone molecules in our upper atmosphere makes life on earth possible.

However, because ozone molecules are chemically unstable, they can be depleted by contaminants in the air. Ozone molecules react with many other molecules or molecular fragments, making ozone useful as a bleach and a disinfectant. Molecules containing chlorine atoms are particularly destructive of ozone because a single chlorine atom can facilitate the destruction of many ozone molecules through a chlorine recycling process.

In contrast, nitrogen molecules are extremely stable. They are so stable that there are only a few biological systems that are capable of separating the two nitrogen atoms in a nitrogen molecule in order to create organic nitrogen compounds. Without these nitrogen-fixing organisms, life wouldn't exist here. Because nitrogen molecules are nearly unbreakable, they survive virtually any amount or type of chemical contamination.

1434. My third grade art class was wondering what color things would be if there was no sunlight? — Mrs. P's class
Most objects make no light of their own and are visible only because they reflect some of the light that strikes them. Without sunlight (or any other light source), these passive objects would appear black. Black is what we "see" when there is no light reaching our eyes from a particular direction. The only objects we would see would be those that made their own light and sent it toward our eyes.

The fact that we see mostly reflected light makes for some interesting experiments. A red object selectively reflects only red light; a blue object reflects only blue light; a green object reflects only green light. But what happens if you illuminate a red object with only blue light? The answer is that the object appears black! Since it is only able to reflect red light, the blue light that illuminates it is absorbed and nothing comes out for us to see. That's why lighting is so important to art. As you change the illumination in an art gallery, you change the variety of lighting colors that are available for reflection. Even the change from incandescent lighting to fluorescent lighting can dramatically change the look of a painting or a person's face. That's why some makeup mirrors have dual illumination: incandescent and fluorescent.

The one exception to this rule that objects only reflect the light that strikes them is fluorescent objects. These objects absorb the light that strikes them and then emit new light at new colors. For example, most fluorescent cards or pens will absorb blue light and then emit green, orange, or red light. Try exposing a mixture of artwork and fluorescent objects to blue light. The artwork will appear blue and black: blue wherever the art is blue and black wherever the art is either red, green, or black. But the fluorescent objects will display a richer variety of colors because those objects can synthesize their own light colors.
The Sunlight Home Page
The Complete Collection of Questions about Sunlight (9 pages, from oldest to newest):
Previous 1 2 3 4 5 6 7 8 9 Next 

Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy