How Everything Works
How Everything Works How Everything Works

Page 4 of 4 (33 Questions and Answers)

1568. What does a radio wave consist of? Is it any gas? I want to know what is the material that is carrying the data? — S, India
Unlike sound waves or ocean waves, radios waves do not travel in a material. Radio waves are a class of electromagnetic waves and consist of nothing more than electric and magnetic fields. Since they don't require any medium through which to travel, they can go right through empty space. That's why we're able to see the stars, after all.

The idea of a wave that travels through space itself was a rather disorienting notion to scientists in the late 1800s. They were used to the idea that waves are disturbances in a tangible material or "medium": fluctuations in the density of air, ripples on the surface of water, vibrations of a taut string. Having observed that light and radio waves are electromagnetic waves, they set about looking for the medium that supported those waves. They were expecting to find this "luminiferous aether" but they failed. In fact, the absence of an aether led in part to Einstein's theory of special relativity.

The structure of a radio wave, or any electromagnetic wave, is quite simple. It consists only of a fluctuating electric field and a fluctuating magnetic field. An electric field is a structure in space that affects electric charge; it pushes on charge and causes that charge to accelerate. Similarly, a magnetic field is a structure that affects magnetic pole. Remarkably, changing electric fields produce magnetic fields and changing magnetic fields produce electric fields. That interrelatedness allows the wave's fluctuating electric field to produce its fluctuating magnetic field and vice verse. The wave's electric and magnetic fields endless recreate one another. Although electric charge or magnetic pole is needed to emit or receive a radio wave, that wave can travel perfectly well for billions of light years without involving any charge or pole. It travels through space itself.

1573. If there was a taught cable, wire, or string 5 light years long and I pulled on one end, would the other end move instantly or would the wire, string, or cable lengthen as it tried to pull the other side towards it? — SB
The cable would indeed lengthen when you pulled it. In fact, you would produce a wave of stretching motion that travels along the cable at the speed of sound in that cable. That's because you can't directly influence the cable beyond what you can touch. You can only pull on your end of the cable, causing it to accelerate and move, and let it then pull on the portion of cable adjacent to it.

Each portion of cable responds to being pulled by accelerating, moving, and consequently pulling on the portion of cable adjacent to it. There will be a long series of actions—pulling, accelerating, moving, and pulling again—that propagates your influence along the cable. A wave will travel along the cable, a wave consisting of a local reduction in the cable's density. It's a stretching wave. In that respect, the wave is a type of sound wave—a density fluctuation that propagates through a medium.

How quickly the density wave travels along the cable depends on how stiff the cable is and on its average mass density. The stiffer the cable, the more strongly each portion can influence its neighboring portions and the faster the density wave will travel. The greater the cable's mass density, the more inertia it has and the slower it respond to pulls, so the density wave will travel slower.

A cable made from a stiff, low-density material carries sound faster than a soft, high-density material. A steel cable should carry your wave at about 6100 meters/second (3.8 miles/second). But a diamond cable would reach 12000 meters/second (7.5 miles/second) because of its extreme stiffness and a beryllium cable would approach 13000 meters/second (8.0 miles/second) because of its extremely low mass density.

Regardless of which material you choose, you're clearly not going to be able to send any signals faster than the speed of light. It would take a density wave more than 100,000 years to travel the 5-light year length of your cable. And sadly, friction-like dissipation effects in the cable would turn the density wave's energy into thermal energy in a matter of seconds, so it would barely get started on its journey before vanishing into randomness.

1594. Are smart meters bad for people’s health? Is this actually not knowable at this time? -- ED
If by smart meters you mean the devices that monitor power usage and possibly adjust power consumption to periodically, then I don't see how they can affect health. Their communications with the smart grid are of no consequence to human health and having the power adjusted on household devices is unlikely to be a health issue (unless they cut off your power during a blizzard or a deadly heat wave).

The radiated power from all of these wireless communications devices is so small that we have yet to find mechanisms whereby they could cause significant or lasting injury to human tissue. If there is any such mechanism, the effects are so weak that the risk associated with it are dwarfed by much more significant risks of wireless communication: the damage to traditional community, the decline of ordinary human interaction, and the surge in distracted driving.
The Radio Home Page
The Complete Collection of Questions about Radio (4 pages, from oldest to newest):
Previous 1 2 3 4 

Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy