How Everything Works
How Everything Works How Everything Works
 

QUESTIONS AND ANSWERS
 
Radio
Page 3 of 4 (33 Questions and Answers)

1051. How does a radio receive transmissions from one station and not another, and how does it turn them into audible waves? — T, Chester, VT
Permalink
A radio wave contains an electric field that pushes on any electric charge it encounters. That's why, when a radio wave passes the antenna of your radio, it causes electric charges in that antenna to accelerate up and down. There is also a resonant circuit connected to the antenna—a circuit that oscillates strongly only when charge is pushed up and down the antenna at exactly the circuit's resonant frequency. If the circuit's resonant frequency is the same as that of the radio wave, the small pushes exerted on charges in the antenna add up so that charge moves more and more vigorously through the resonant circuit. But if your radio isn't tuned to the frequency of the radio wave, the overall motion of charge on the antenna and this resonant circuit is small. That's why your radio only responds to the radio transmission of one station and not others. To understand this effect, imagine pushing a child on a swing. If you push rhythmically at just the right frequency, the child will swing higher and higher. But if you push rhythmically at the wrong frequency, the child will just jitter about a bit.

Once charge is moving strongly through the resonant circuit in your radio, the radio can monitor various features of that moving charge. If the station is using the AM or amplitude modulation technique to represent sound, your radio studies the amount of charge moving back and forth through the resonant circuit. When that flow of charge—that current—is strong, it moves the speaker cone toward you and produces a compression of the air. When that current is weak, it moves the speaker cone away from you and produces a rarefaction of the air. These changes in air density and pressure reproduce the sound that the station is transmitting.

If the station is using the FM or frequency modulation technique to represent sound, your radio studies the frequency at which charge moves back and forth in the resonant circuit. Very small changes in this frequency, caused by frequency changes in the radio wave itself, are used to control the speaker cone in your radio. When the frequency is raised slightly above normal, your radio moves the speaker cone toward you and produces a compression of the air. When the frequency is lowered slightly below normal, your radio moves the speaker cone away from you and produces a rarefaction of the air. Again, these changes in air density and pressure produce sound.


1078. I've heard the reason an antenna, such as the one on your car, is so long is because it needs to be large enough for the long radio waves to pass into it. Is this true? Why are antennas for radio stations so tall and slender? — LW, Blacksburg, VA
Permalink
A vertical pole radio antenna receives a radio wave by allowing that wave to push electric charges up and down the antenna. The radio senses this moving charge and is thus aware of the passing radio wave. The ideal length of a vertical receiving antenna is a quarter of the wavelength of the radio wave it's trying to receive—in which case, charge that the radio wave's electric field pushes up and down the antenna has just enough time to reach the end of the antenna before it has to reverse directions.

The waves used for standard AM radio transmissions have very long wavelengths—typically 300 meters—so that they require vertical pole antennas that are about 75 meters long for optimal reception. An antenna of that length is also optimal for radio transmission, which is why the antennas of AM radio stations are so long and slender. However, because such long antennas are inconvenient for most AM receivers, most AM receivers use small magnetic antennas. A magnetic antenna is a device containing an iron-like material called ferrite that draws in magnetic flux lines like a sponge. A coil of wire is wound around this ferrite so that as the magnetic flux lines of a passing radio wave enter the ferrite, they induces electric currents into the coil of wire. This coil then acts as the antenna.

But the waves used in FM radio transmission have much shorter wavelengths—typically 3 meters—so that antennas of about 75 centimeters are all that's needed. The vertical pole radio antenna on your car is designed to receive these FM waves. The antennas of FM radio stations are also rather short, but they are usually mounted high up on a pole so that the whole structure looks like an AM radio antenna. However, if you look near the top of an FM radio tower, you'll see the actual FM antenna as a much smaller structure.


1097. How do radios work?
Permalink
A radio station launches a radio wave by moving electric charges rhythmically up and down their antenna. As this electric charge accelerates back and forth, it produces a changing electric field—a structure in space that pushes on electric charges—and a changing magnetic field—a structure in space that pushes on magnetic poles. Because the electric field changes with time, it creates the magnetic field and because the magnetic field changes with time, it creates the electric field. The two travel off across space as a pair, endlessly recreating one another in an electromagnetic wave that will continue to the ends of the universe. However, when this wave encounters the antenna of your radio, its electric field begins to push electric charges up and down on that antenna. Your radio senses this motion of electric charges and thus detects the passing radio wave.

To convey audio information (sound) to you radio, the radio station makes one of several changes to the radio wave it transmits. In the AM or Amplitude Modulation technique, it adjusts the amount of charge it moves up and down its antenna, and hence the strength of its radio wave, in order to signal which way to move the speaker of your radio. These movements of the speaker are what cause your radio to emit sound. In the FM or Frequency Modulation technique, the radio station adjusts the precise frequency at which it moves charge up and down its antenna. Your radio senses these slight changes in frequency and moves its speaker accordingly.


1155. How can I build an AM radio?
Permalink
That's a very open ended question so I'll describe the simplest AM radio I can think of—a crystal radio. A crystal radio already addresses most of the issues of AM radio and more sophisticated AM radios just improve on its performance.

You need only four basic components for a crystal radio: an antenna, a tank circuit, a diode, and a high-impedance earphone.

The antenna is a long wire that projects upward into the electromagnetic fields of the passing radio wave so that electric charges begin to move up and down its length. The ideal length for this wire is a quarter of the wavelength of the wave you're trying to receive, but since that's hundreds of meters for a typical AM station, you'll have to settle for a shorter than ideal antenna.

The tank circuit is a coil of wire that's connected at each end to the two ends of a capacitor. In a typical crystal radio, one of these items—either the coil or the capacitor—is adjustable and forms the tuning element that allows you to select a particular AM station. The tank circuit is a resonant device—electric charges and current flow back and forth through it rhythmically at a specific frequency. If that resonant frequency is adjusted so that it coincides with the transmission frequency of an AM radio station, the small currents flowing in the antenna that's connected to the tank circuit will excite large movements of charge and current in the tank circuit.

The diode is also connected to the tank circuit. Its job is to extract some of the charge that oscillates back and forth in the tank circuit and to send that charge to the earphone. By allowing current to flow only in one direction, the diode samples the overall amount of charge moving in the tank circuit. What it passes to the earphone is a measure of how strong the radio wave is, which is actually the form in which the AM radio station is transmitting sound information.

The high-impedance earphone uses the diode's tiny charge deliveries to reproduce sound. The diaphragm inside the earphone moves back and forth as the amount of charge passing through the diode fluctuates up and down. Each time the radio wave increases in strength, the diaphragm moves in one direction. Each time the radio wave decreases in strength, the diaphragm moves in the other direction. Thus as the radio station varies the strength of its radio wave, the earphone's diaphragm moves back and forth and it reproduces the sound.


1192. Could you explain the meaning of polarization in optics? Please try to associate it with water waves if possible, to help me visualize it, and avoid the use of electric and magnetic fields. — AM, Yavne, Israel
Permalink
I can't completely avoid electric and magnetic fields because polarization in optics is associated with a wave's electric field. I also can't depend entirely on water waves because they only have one (transverse) polarization. Still, I will try.

First, consider a wave traveling toward us on the surface of a lake. Suppose that this wave passes under a small boat and I ask you which way the wave is making the boat move. You would tell me that the boat is moving up and down. I would then tell you that the wave is vertically polarized because it causes objects that it encounters to move up and down rhythmically.

Unfortunately, pure water won't do for the next step because it won't support horizontally polarized waves. So let's imagine that some ecological disaster has turned the entire lake into gelatin. An explosion at the side of the lake now causes a wave to begin heading toward us on the gelatin lake, but this strange wave involves a side-to-side motion of the lake's surface. Now when the wave passes under the boat, the boat moves side-to-side rhythmically. In this case the wave is horizontally polarized because it causes objects that it encounters to move left and right rhythmically.

Now let's return to optics. When an electromagnetic wave heads toward us, its electric fields will push any electrically charged particles it encounters back and forth rhythmically. If we watch one of these charged particles as the wave passes it and observe that this particle moves up and down, then the wave is vertically polarized. If instead the charged particle moves left and right, then the wave is horizontally polarized.


1247. I work finding sites for cellular & PCS wireless telephone antennae. I would like to know how radio waves work and how they are able to carry voice and data information. What are these waves and do they exist naturally or do we set them up using electric charges? — PAB, Madison, WI
Permalink
Radio waves are a class of electromagnetic waves, specifically the lowest frequency, longest wavelength electromagnetic waves. Actually, the electromagnetic waves used in cellular & PCS transmissions are technically known as microwaves because they have wavelengths of less than 1 meter, but there are no important differences between radio waves and microwaves.

Like all electromagnetic waves, radio waves and microwaves consist of coupled electric and magnetic fields that sustain one another in stable structures that move rapidly through empty space. Because an electromagnetic wave's electric field changes with time, it is able to create the wave's magnetic field and, because its magnetic field changes with time, that magnetic field is able to create the wave's electric field. Since they consist only of electric and magnetic fields, these waves cannot stay still—they must move (although you can trap them between mirrors so that they appear to stand in one place as they bounce back and forth). While they contain no true mass, they do contain energy and an electromagnetic wave carries energy from one place to another.

Electromagnetic waves are created whenever electrically charged particles change speed or direction; whenever they accelerate. Since there are accelerating electric charges everywhere—thermal energy keeps them moving about—there are also electromagnetic waves everywhere. But the radio waves used in communications systems are generated deliberately by moving electric charges back and forth. When charges are sent up and down a radio antenna, these charges are accelerating and they form complicated electric and magnetic fields that include electromagnetic waves. Once launched, those electromagnetic waves propagate through space at approximately the speed of light.

To send information with radio waves, a transmitter makes modifications in one or more the wave's characteristics. In an amplitude modulation scheme (AM), the transmitter changes the strength or "amplitude" of the wave to convey information—like sending radio smoke signals. In the frequency modulation scheme (FM), the transmitter changes the frequency of the wave to convey information—like whistling a tune with a complicated melody.


1312. Is it possible to track a person based on the fact that they are listening to a radio receiver? — BRAR, India
Permalink
While tracking a radio transmitter is easy—you only need to follow the radio waves back to their source—you might think that tracking a radio receiver is impossible. After all, a radio receiver appears to be a passive device that collects radio waves rather than emitting them. But that's not entirely true. Sophisticated radio receivers often use heterodyne techniques in which the signal from a local radio-frequency oscillator is mixed with the signal coming from the antenna. The mixing process subtracts one frequency from the other so that antenna signals from a particular radio station are shifted downward in frequency into the range the radio uses to create sound. This mixing process allows the radio receiver to be very selective about which station it receives. The receiver can easily distinguish the station that's nearest in frequency to its local oscillator from all the other stations, just as its easy to tell which note on a piano is closest in pitch to a particular tuning fork.

But heterodyne techniques have a side effect: they cause the radio receiver to emit radio waves. These waves originate with the local radio-frequency oscillator, and with other internal mixing frequencies such as the intermediate frequency oscillator present in many sophisticated receivers. Because these oscillators don't use very much power, the waves they emit aren't very strong. Nonetheless, they can be detected, particularly at short range. For example, it's possible for police to detect a radar detector that contains its own local microwave oscillator. Similarly, people who have tried to pirate microwave transmissions have been caught because of the microwaves emitted from their receivers. In WWII, the Japanese were apparently very successful at locating US forces by detecting the 455 kHz intermediate frequency oscillators in their radios—a problem that quickly led to a redesign of the radios to prevent that 455 kHz signal from leaking onto the antennas (thanks to Tom Skinner for pointing this out to me). As you can see, it is possible to track someone who is listening to the right type of radio receiver. However, the radio waves from that receiver are going to be very weak and you won't be able to follow them from a great distance.


1386. Is a CB radio also an AM radio?
Permalink
CB or citizens band radio refers to some parts of the electromagnetic spectrum that have been set aside for public use. You can operate a CB radio without training and without serious legal constraints, although the power of your transmitted wave is strictly limited. The principal band for CB radio is around 27 MHz and I think that the transmissions use the AM audio encoding scheme. As you talk, the power of your transmission increases and decreases to represent the pressure fluctuations in your voice. The receiving CB radio detects the power fluctuations in the radio wave and moves its speaker accordingly.

1513. Can infrared lasers, thermal cameras, digital cameras, or optical fiber cameras be used to see through walls of homes or to monitor people's conversations? — CB, Connecticut
Permalink
I'm beginning to think that movies and television do a huge disservice to modern society by blurring the distinction between science and fiction. So much of what appears on the big and little screen is just fantasy.

The walls of your home are simply hard to look through. They block visible, infrared, and ultraviolet light nearly perfectly and that doesn't leave snoopers many good options. A person sitting outside your home with a thermal camera—a device that "sees" the infrared light associated with body-temperature objects—or a digital camera is going to have a nice view of your wall, not you inside. There are materials that, while opaque to visible light, are relatively transparent to infrared light, such as some plastics and fabrics. However, typical wall materials are too thick and too opaque for infrared light to penetrate. Sure, someone can put a camera inside your home and access it via an optical fiber or radio waves, but at that point, they might as well just peer through your window.

The only electromagnetic waves that penetrate walls well are radio waves, microwaves, and X rays. If someone builds an X ray machine around your home, they'll be able to see you, or at least your bones. Don't forget to wave. And, in principle, they could use the radar technique to look for you with microwaves, but you'd be a fuzzy blob at best and lost in the jumble of reflections from everything else in your home.

As for using a laser to monitor your conversations from afar, that's a real possibility. Surfaces vibrate in the presence of sound and it is possible to observe those vibrations via reflected light. But the technical work involved is substantial and it's probably easier to just put a bug inside the house or on its surface.

Since I first posted this answer, several people have pointed out to me that terahertz radiation also penetrates through some solid surfaces and could be used to see through the walls of homes. In fact, the whole low-frequency end of the electromagnetic spectrum (radio, microwaves, terahertz waves) can penetrate through electrically insulating materials in order to "observe" conducting materials inside a home and the whole high-frequency end of that spectrum (X-rays and gamma rays) can penetrate through simple atoms (low atomic number) in order to "observe" complex atoms inside a home. Still, these approaches to seeing through walls require the viewers to send electromagnetic waves through the house and those waves can be detected by the people inside. They're also not trivial to implement. I suppose that people could use ambient electromagnetic waves to see what's happening in a house, but that's not easy, either. Where there's a will, there's a way: stealth aircraft have been detected by way of the dark spot they produce in the ambient radio spectrum and the insides of the pyramids have been studied by looking at cosmic rays passing through them. Nonetheless, I don't think that many of us need worry about being studied through the walls of our homes.


1546. How can light "travel" through a vacuum when there were no "particles" in the vacuum on which it could "transmit" its charge? DC
Permalink
Light has no charge at all. It consists only of electric and magnetic field, each endlessly recreating the other as the pair zip off through empty space at the speed of light.

The fact that light waves can travel in vacuum, and don't need any material to carry them, was disturbing to the physicists who first studied light in detail. They expected to find a fluid-like aether, a substance that was the carrier of electromagnetic waves. Instead, they found that those waves travel through truly empty space. One thing led to another, and soon Einstein proposed that the speed of light was profoundly special and that space and time were interrelated by way of that speed of light.


www.HowEverythingWorks.org
The Radio Home Page
The Complete Collection of Questions about Radio (4 pages, from oldest to newest):
Previous 1 2 3 4 Next 

Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy