How Everything Works
How Everything Works How Everything Works

Page 2 of 3 (27 Questions and Answers)

453. Why is it so expensive to recycle plastic?
Different plastics are handled differently for recycling. Thermosets, such as rubber in tires, cannot be melted and cannot be recycled. Only thermoplastics can be melted for true reuse. There are 6 common thermoplastics that are recycled. These are numbered 1 through 6 on their bottoms. Objects made from one of these plastics can be collected together, melted, and then reformed into new useful objects. Unfortunately, the melted and reformed plastic isn't as pure as the original. The plastics manufacturers would rather clean up petroleum into petrochemicals and then make pure plastics than start with plastic objects, clean them, and reuse them. Because the recycler can't control what was in the plastic objects, these objects cannot be used for critical applications such as food containers or plumbing. Thus most recycled plastic is used for less profitable applications. If the recycler could be absolutely sure that the plastic hadn't been contaminated, some of it could be reused very easily. Plastic milk jugs could be reformed into plastic milk jugs over and over again.

493. Please explain pectin and why sugar and acid are needed when making jelly.
The molecules of pectin contain enormous chains of atoms, often hundreds or even thousands of atoms long.. Such chains are also found in cellulose and starch, and are used by plants to give them strength and structure. These chain-like molecules are naturally occurring polymers or plastics. The giant molecules in pectin are based on small molecular units of D-galacturonic acid that have joined together like strings of paper dolls. The presence of acid groups on the pectin molecules help to make pectins very water soluble and also sensitive to the acid-base balance of their environment. I am not an expert in the exact structure and chemistry of pectin, or in the proper pH needed for jellymaking, so I can't give you an exact explanation for how to control the jelling process with acids. But the jell forms because these giant molecules spread out in the viscous solution of sugar and fruit juice, and form a tangled network of filaments that span the entire container. At high temperatures, there is enough mobility in the molecular chains to allow the mixture to flow, but at room temperature, the tangle of molecular filaments prevents flow. In the language of polymer or plastic science, the mixture goes from a liquid flow regime at high temperature to an elastic plateau regime at low temperature. When you deform cold jelly, you are pulling the filaments tight but they can't disentangle themselves enough to allow the jelly to actually flow. When you deform the cold jelly too far, the filaments begin to break and the jelly tears into fragments. However, when you warm the jelly, thermal energy allows the filaments to move past one another and the jelly begins to flow like a thick (or viscous) liquid.

498. How is powder coating done?
Powder coating is done by combining the components of the coating (the binder—a polymer having giant chain-like molecules, the pigments, and the additives) to form a uniform solid, which is then pulverized to a dry powder and sprayed onto the surface to be coated. This coating is then baked to form a continuous film. There are two main classes of powder coatings: thermosetting and thermoplastic coatings. In a thermosetting film, crosslinking occurs between the molecules in the powder during baking. This crosslinking turns the baked film into a single giant molecule that can't melt or flow. In a thermoplastic film, thermal energy makes the binder molecules mobile enough to become entangled so that a continuous film forms and this film hardens upon cooling. While a thermoplastic film can still melt or flow, it can do that only at elevated temperatures. The powders are often given electric charges during spraying so that electrostatic forces will hold them in place until they're baked on.

522. How does Styrofoam work?
Styrofoam is a rigid foam consisting of gas trapped in the closed bubbles of polystyrene. Polystyrene itself is a clear plastic that's used in many disposable food containers. It's a stiff, amorphous solid at temperatures below 100° C, where amorphous means that it has none of the long-range order associated with crystalline solids. The long, chain-like polystyrene molecules are arranged like a tangled bowl of spaghetti noodles. Amorphous plastics tend to be clear because they're very homogeneous (uniform) internally and let light passes through them without being deflected or reflected. Plastics that are partially crystalline tend to be white. I think that items bearing the #5 recycling label are made of polystyrene.

But when air or another gas is injected into melted polystyrene and the mixture is beaten to a froth, it forms a stiff white solid when it cools. The whiteness comes about because of inhomogenieties—the gas spoils the uniformity of the plastic so that light is deflected and reflected as it passes through the material. The Styrofoam retains the rigidity of the polystyrene plastic below 100° C, so that it's suitable for beverage containers for liquids that are no hotter than boiling water. At one time, one of the gases used to make polystyrene foams was Freon, but I believe that Freon is no longer used for this purpose.

564. How does hair spray work? — KC, IL
While I don't know exactly what chemicals are used in hairspray, the main constituents are almost certainly polymer molecules—otherwise known as plastics. In the container, these polymer molecules are dissolved in a volatile solvent such as an alcohol or water, and pressurized with a chemical such as propane or a hydrofluorocarbon. When you spray the mixture onto your hair, the solvent evaporates and leaves the polymer molecules clinging to the hairs. These molecules are very long chains of atoms that form a stiff web around each hair and stiffen it. In general, the characteristics of polymers change with temperature and chemical environment. The polymer used in hairspray should be in the "glassy" regime, meaning that its atoms and molecules are essentially immobile at room temperature. Once the solvent is gone, the web of polymer molecules on the hairs is stiff and keeps the hairs from changing shape. Before you panic at the idea of spraying plastic onto your hair, consider that starch is also a polymer, as is hair itself. So putting hairspray on your hair is no different from putting starch on clothes.

693. What are gas permeable contact lenses made from and what do they use to pigment them? — TG, Tulsa, OK
A gas permeable contact lens is one that allows oxygen to diffuse through it to the cornea of the wear's eye. While conventional hard lenses were made almost entirely of a plastic known as poly(methyl methacrylate) or PMMA, commonly known as Plexiglas or Lucite, gas permeable hard or semirigid lenses are copolymers containing both methacrylate and siloxane molecular units. The polymers used in soft lenses are made only of siloxane molecular units and are commonly known as silicon rubbers. The molecules in silicon rubbers are mobile at remarkably low temperatures, giving silicon rubber its flexibility. In fact, these molecules are so mobile that they must be linked together or "vulcanized" to keep them from flowing as a liquid at room temperature. Even when they have been linked together, portions of these molecules are very mobile, so that gas atoms and molecules can diffuse easily through them. I'm not sure what chemicals are used to color contact lenses, but I expect that the dye molecules are permanently linked to the polymer molecules to keep them in place.

748. How are the paints made that artists (like Rembrandt and Monet) used in the past? — SB, Oedenrode, The Nederlands
These paints consisted principally of a pigment and a drying oil binder. The pigment was usually a colored powder that didn't dissolve in the oil. Historically, these pigments were materials collected from nature. The drying oil binder was usually linseed oil, obtained from the seed of the flax plant and a byproduct of the linen industry. Like most organic oils, linseed oil is a triglyceride—it consists of a glycerin molecule with three fatty acid chains attached to it. But while in typical animal or tropical plant oils the carbon atom chains of the fatty acids are completely decorated with hydrogen atoms (saturated fats) or almost completely decorated (monounsaturated fats), the carbon atom chains in linseed oil are missing a significant number of hydrogen atoms (polyunsaturated fats). The polyunsaturated character of linseed oil makes it vulnerable to a chemical reaction in which the chains stick permanently to one another—a reaction call polymerization. With time and exposure to air, the molecules in linseed oil bind together forever to form a real plastic! This "drying" process takes weeks, months, or years, depending on the chemicals present in the paint. It can be accelerated by the addition of catalysts—chemicals that assist the polymerization process but that don't become part of the final molecular structure of the plastic.

831. How do Oven Cooking Bags work? I know they are made of heat resistant nylon resin, but can you explain what that means? — HY, Halifax, Nova Scotia
There are two broad classes of plastics: (1) thermoplastics that can melt, at least in principle, and (2) thermosets that can't melt under any circumstances. Thermoplastics consist of very long but separable molecules and common thermoplastics include polyethylene (milk containers), polystyrene (Styrofoam cups), Nylon (hosiery), and cellulose (cotton and wood fiber). Thermosets consist of very long molecules that have been permanently cross-linked to one another to form one giant molecule. Common thermosets include cross-linked alpha-helix protein (hair) and vulcanized rubber (car tires).

Most common plastic items are made from thermoplastics because these meltable plastics can reshaped easily. But different thermoplastics melt at different temperatures, depending on how strongly their long molecules cling to one another. The plastic in an Oven Cooking Bag is almost certainly a thermoplastic form of Nylon, but one that melts at such a high temperature that it doesn't change shape in the oven. It's possible that the Nylon has been cross-linked to form a thermoset, so that it can't melt at all, but I wouldn't expect this to be the case.

958. How are the nylon ropes of parachutes able to stop the falling parachuter? How much of a force must they over come, and how might the ropes' elasticity be affected? — C
When the parachuter opens the parachute and begins to slow down, the parachute's nylon shrouds briefly exert a large upward force on the parachuter. Over a period of a few seconds, the parachuter slows from a downward speed of about 150 mph to a downward speed of 20 mph and experiences several g's of upward acceleration. To cause this much upward acceleration, the nylon shrouds must exert an upward force on the parachuter that is several times the parachuter's weight. The nylon shrouds are quite strong and can easily tolerate this much tension without exceeding their elastic limits. There should be no adverse effects on their elasticities.

1005. How dangerous are plastics for storing and reheating food? I remember hearing that plastic containers can release carcinogenic materials when reheating food in the microwave. I also heard that plastics can release "plasticizers" into food even when cold. What studies exist about these dangers? — CVL, Fairfax, VA
While I'm not up to date on actual studies, I would think that most food storage plastics introduce very little contamination into the foods stored in them. We have become so concerned as a society about toxic chemicals in recent years that we tend to overreact much of the time. While the actual polymer molecules in most plastics are relatively inert and harmless, plastics inevitably contain some small molecules, either by accident or by design, that work their way into food. Even if some of these molecules are toxic or carcinogenic, the quantities involved are almost certainly insignificant. Modern chemical testing can detect incredibly small quantities of various chemicals and we panic every time we find them in our environment. But the societal cost of banning or avoiding all contact with or use of these chemicals may have hidden costs that are worse than the problem we're trying to solve. Moreover, I'll bet that many of the foods put in plastic containers are greater health hazards than the containers themselves.
The Plastics Home Page
The Complete Collection of Questions about Plastics (3 pages, from oldest to newest):
Previous 1 2 3 Next 

Copyright 1997-2018 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy