How Everything Works
How Everything Works How Everything Works

Electric Power Distribution
Page 3 of 8 (73 Questions and Answers)

255. When you say that a transformer can change a small current with a high voltage into a large current with a low voltage, where do those extra charges come from?
A transformer involves two completely separate circuits: a primary circuit and a secondary circuit. Charges circulate within each circuit, but do not move from one circuit to the other. If the primary circuit of a transformer has a small current flowing through it and that current experiences a large voltage drop as it flows through the transformer's primary coil, then the primary circuit current is transferring power to the transformer and that power is equal to the product of the primary circuit current times the voltage drop. The transformer transfers this power to the current flowing in the secondary circuit, which is an entirely separate current. That current may be quite large, in which case each charge only receives a modest amount of energy as it passes through the secondary coil. As a result, the voltage rise across the secondary coil is relatively small. The power the transformer is transferring to the secondary circuit current is equal to the product of the secondary circuit current times the voltage rise.

256. Where does the exact reversal occur in an alternating current circuit (where does the energy diminish completely and then turn the opposite way)?
The reversal of the current in an alternating current (AC) circuit occurs everywhere in the circuit at once. The whole current gradually slows to a stop and then heads backward. At the moment it comes to a complete stop, the electric power company isn't supplying any power at all and the circuit isn't consuming any. Because the power delivery pulses on and off in this manner, devices that operate on AC power are designed to store energy between reversals. Motors store their energy as rotational motion. Stereos store energy as separated electric charge in devices called capacitors, or as magnetic fields in devices called inductors.

257. Why are there danger signs around high voltage equipment?
Your body is a relatively good conductor of electricity and it is easily damaged by currents flowing through it. Your body uses electricity to control its functions and an unexpected current of as little as a few hundredths of an ampere can interrupt those functions. In particular, your heart can stop beating properly. Fortunately, your skin is a pretty good insulator so it is hard to get any current to flow through you. But high voltages can push current so hard that it punctures your skin and begins to flow through you. While the current is actually what injures you, the high voltage is what breaks down your protective skin and allows that current to flow through you.

258. Why do north and south poles on magnets change back and forth?
Only electromagnets can change back and forth and then only when they are connected to a supply of alternating current. A permanent magnet, such as that used to hold notes to a refrigerator, has permanent poles that do not change. But an AC powered electromagnet, such as that found in a transformer, does have poles that change back and forth.

259. Why does a high voltage transformer make ozone?
High voltages involve large accumulations of like electric charges. These charges repel one another ferociously and can leap off into the air near sharp points and edges. They produce sparks and corona discharges. While these discharges are useful in some devices (e.g. copiers and air cleaners), they tend to transfer energy to air molecules and can break up those air molecules. When normal oxygen molecules (which each contain 2 oxygen atoms) break up, the resulting oxygen atoms can stick to other oxygen molecules to form ozone molecules (which each contain 3 oxygen atoms). That is why you can often smell ozone near electrical discharges, high voltage power lines, and after thunderstorms.

260. Why does less current flow through a longer wire?
Wires obey Ohm's law: the current flowing through them is proportional to the voltage drop across them. But the precise relationship depends on the wire's length. A short wire will carry a large current even when the voltage drop across it is small because that wire has a small electrical resistance; it does not impede the flow of electricity very much. But a long wire has a large electrical resistance and will only carry a large current if the voltage drop across it is large. If you do not change the source of electrical power (e.g. a battery) and replace short wires with long wires, those wires will not be able to carry as much current.

261. Why is direct current so much better than alternating current?
It depends on the situation. You cannot use a transformer with direct current, so in that sense, alternating current is better. But many electronic devices need direct current because they require a steady flow of charges that always head in the same direction. So there are times when you need DC and times when you need AC.

513. How do power lines work and what is the purpose of all the electrical things you see behind the fences with signs saying "Warning: High Voltage"?
Electric power is distributed over long distance using high voltages and relatively low currents. Since the amount of power that flows through a wire is equal to the product of its voltage (the amount of energy carried by each unit of electric charge) and its current (the number of units of electric charge that flow through the wire each second), the electric company can distribute its power either as a large current at low voltages or a small current at high voltages. But it turns out that the amount of power that's wasted by electricity as it flows through a wire is proportional to the square of the current in that wire. Thus the more current that flows through a wire, the more power that wire turns into thermal energy (or heat). To minimize this energy loss, the power company uses transformers to convert the electricity to small currents at very high voltages for transmission cross country. Near each community, there is then a power substation at which this very high voltage power is converted to lower voltage forms. Even in neighborhoods, they use medium currents at moderately high voltages to avoid power wastage. Only in the vicinity of your home is the electricity finally converted by transformers to a large current at low voltage for safe delivery to your appliances. You've probably seen those final transformers as the gray oil-drum sized units on utility poles or the green boxes on front lawns. But despite all this effort to minimize power loss, something like 6% of the electric power generated in this country is lost in the delivery process.

591. What are watts and amps? - NS
The watt is the standard unit of power—that is, it's the way in which we measure how much energy is being transferred to or from sometime each second. 1 watt is equivalent to 1 joule of energy per second. A 100 watt light bulb consumes 100 joules of electric energy each second. Anytime energy moves from one place to another, you can determine how much power is flowing. For example, the food energy in a jelly donut is about 1 million joules, so if you eat 1 jelly donut in 100 seconds, you receive 10,000 watts of power. Since your body only consumes about 100 watts of power while you are resting, it will take you 10,000 seconds to use up all that food energy.

The amp (or ampere) is the standard unit of electric current—that is, its the way in which we measure how many electric charges flow past a certain point each second. 1 amp is equivalent to 1 coulomb of electric charge per second. Since 1 coulomb of electric charge is the charge on 6,240,000,000,000,000,000 protons, even a current of only 1 amp means that a great many electric charges are passing each second. The current passing through a 100-watt light bulb is roughly 1 amp on average, while the current used in starting a car is about 100 amps.

598. How does the power/frequency of the earth's magnetic field compare to the magnetic fields of electrical appliances? — MC, Independence, KA
Although I haven't been able to find detailed lists of the magnetic fields near common appliances (such lists do exist), those fields are unlikely to be stronger than the earth's own magnetic field. That's because the magnetic fields in most appliances are created by electric currents and you must be quite near a relatively large current before the magnetic field of that current exceeds 0.5 gauss, the strength of the earth's magnetic field. But while an appliance's magnetic field is likely to be no greater than that of the earth, the appliance's magnetic field does change with time. It reverses each time that the alternating current from the power line reverses. In the United States, that's 120 reversals per second (60 full cycles of reversal, over and back, each second).
The Electric Power Distribution Home Page
The Complete Collection of Questions about Electric Power Distribution (8 pages, from oldest to newest):
Previous 1 2 3 4 5 6 7 8 Next 

Copyright 1997-2018 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy