How Everything Works
How Everything Works How Everything Works

Electric Motors
Page 2 of 2 (14 Questions and Answers)

1238. Why does a single phase 220 volt motor run off two legs of a three-phase circuit?
In three-phase power, the voltages of the three power wires fluctuate up and down cyclically so that they are "120 degrees" apart. By "120 degrees" apart, I mean that each wire reaches its peak voltage at a separate time—first the X wire, then the Y wire, and then the Z wire—with the Y wire reaching its peak 1/3 of the 360 degree cycle (or 120 degrees) after the X wire and the Z wire reaching its peak 1/3 of the 360 degree cycle (or 120 degrees) after the Y wire.

The specific voltages and their relationships with ground or a possible fourth "neutral" wire depend on the exact type of transformer arrangement that supplies your home or business. In the standard "Delta" arrangement (which you can find discussed at sites dealing with power distribution), the voltage differences between any pair of the three phases is typically 240 VAC. In the standard "Wye" arrangement, the typical voltage difference between any pair of phases is 208 VAC and the voltage difference between any single phase and ground is 120 VAC. And in the "Center-Tapped Grounded Delta" arrangement, the voltage difference between any pair of phases is 240 VAC and the voltage difference between a single phase and neutral is 120, 120, and 208 VAC respectively (yes, the three phases behave differently in this third arrangement).

If you run a single-phase 220 VAC motor from two wires of a Delta arrangement power outlet, that motor will receive a little more voltage (240 VAC) than it was designed for and if you run it from two wires of a Wye arrangement outlet, it will receive a little less voltage (208 VAC) than appropriate. Still, the motor will probably run adequately and it's unlikely that you'll ever notice the difference.

1378. How does electric current create magnetic poles in metal? When the current goes through the metal, what makes it positive and negative?
An electric current is itself magnetic—it creates a structure in the space around it that exerts forces on any magnetic poles in that space. The magnetic field around a single straight wire forms loops around the wire—the current's magnetic field would push a magnetic pole near it around in a circle about the wire. But if you wrap the wire up into a coil, the magnetic field takes on a more familiar shape. The current-carrying coil effectively develops a north pole at one end of the coil and a south pole at the other. Which end is north depends on the direction of current flow around the loop. If current flows around the loop in the direction of the fingers of your right hand, then your thumb points to the north pole that develops at one end of the coil.

1379. What is the difference between a magnet and an electromagnet? Why are some metals automatically magnetic?
Some metals are composed of microscopic permanent magnets, all lumped together. Such metals include iron, nickel, and cobalt. This magnetism is often masked by the fact that the tiny magnets in these metals are randomly oriented and cancel one another on a large scale. But the magnetism is revealed whenever you put one of these magnetic metals in an external magnetic field. The tiny magnets inside these metals then line up with the external field and the metal develops large scale magnetism.

However, most metals don't have any internal magnetic order at all and there is nothing to line up with an external field. Metals such as copper and aluminum have no magnetic order in them—they don't have any tiny magnets present. The only way to make aluminum or copper magnetic is to run a current through it.

1591. I have an active but paraplegic friend who is building an electric off-road scooter using DC motors. Those motors will have to reverse directions frequently while under load. Will they tolerate immediate reversals, or must there be a delay? — JO, Valley Springs, California
Modern brushless DC motors are amazing devices that can handle torque reversals instantly. In fact, they can even generate electricity during those reversals!

Instant reversals of direction, however, aren't physically possible (because of inertia) and aren't actually what your friend wants anyway. I'll say more about the distinction between torque reversals and direction reversals in a minute.

In general, a motor has a spinning component called the rotor that is surrounded by a stationary component called the stator. The simplest brushless DC motor has a rotor that contains permanent magnets and a stator that consists of electromagnets. The magnetic poles on the stator and rotor can attract or repel one another, depending on whether they like or opposite poles—like poles repel; opposite poles attract.

Since the electronics powering the stator's electromagnets can choose which of the stator's poles are north and which are south, those electronics determine the forces acting on the rotor's poles and therefore the direction of torque on the rotor. To twist the rotor forward, the electronics make sure that the stator's poles are always acting to pull or push the rotor's poles in the forward direction so that the rotor experiences forward torque. To twist the rotor backward, the electronics reverses all those forces.

Just because you reverse the direction of torque on the rotor doesn't mean that the rotor will instantly reverse its direction of rotation. The rotor (along with the rider of the scooter) has inertia and it takes time for the rotor to slow to a stop and then pick up speed in the opposite direction. More specifically, a torque causes angular acceleration; it doesn't cause angular velocity. During that reversal process, the rotor is turning in one direction while it is being twisted in the other direction. The rotor is slowing down and it is losing energy, so where is that energy going? It's actually going into the electronics which can use this electricity to recharge the batteries. The "motor" is acting as a "generator" during the slowing half of the reversal!

That brushless DC motors are actually motor/generators makes them fabulous for electric vehicles of all types. They consume electric power while they are making a vehicle speed up, but they generate electric power while they are slowing a vehicle down. That's the principle behind regenerative braking—the vehicle's kinetic energy is used to recharge the batteries during braking.

With suitable electronics, your friend's electric scooter can take advantage of the elegant interplay between electric power and mechanical power that brushless DC motors make possible. Those motors can handle torque reversals easily and they can even save energy in the process. There are limits, however, to the suddenness of some of the processes because huge flows of energy necessitate large voltages and powers in the motor/generators and their electronics. The peak power and voltage ratings of all the devices come into play during the most abrupt and strenuous changes in the motion of the scooter. If your friend wants to be able to go from 0 to 60 or from 60 to 0 in the blink of eye, the motor/generators and their electronics will have to handle big voltages and powers.
The Electric Motors Home Page
The Complete Collection of Questions about Electric Motors (2 pages, from oldest to newest):
Previous 1 2 

Copyright 1997-2015 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy