How Everything Works
How Everything Works How Everything Works

Page 3 of 3 (24 Questions and Answers)

1211. How does a catalytic converter help emissions in a car? — JAM, Littleton, Colorado
While the burned gases that emerge from an ideal car engine would consist only of water vapor, carbon dioxide, and nitrogen gas, a real car engine is far from ideal. In addition to these gases, a real engine emits nitrogen oxides, carbon monoxide, and various unburned hydrocarbons left over from the gasoline. Because these gases are major contributors to urban smog, car manufacturers have been forced to reduce them in various ways.

One of the most effective tools for eliminating the unburned hydrocarbons and carbon monoxide is a catalytic converter. It is essentially a pipe containing a ceramic honeycomb on which there are countless tiny particles of platinum and palladium. As the unwanted molecules pass through the honeycomb, they land on the metal particles briefly and are combined with oxygen atoms to form water vapor and carbon dioxide. The catalytic converter is burning these molecules in a controlled way, with the precious metal particles acting as catalysts to assist the burning process.

Like all catalysts, these particles are not consumed in the process of burning the gases, but they can easily be contaminated. That's why it's so important not to put leaded gasoline in a car with a catalytic converter—one tank of leaded gas is all it takes to lead-coat the tiny platinum and palladium particles and to render them useless. Another interesting note is that the catalytic converter is usually located on the underside of the car, protected only by a thin metal shield. The converter becomes very hot in operation, both because hot exhaust gas is passing through it and because the controlled combustion taking place inside it heats it up. Don't park a car with a catalytic converter over a pile of leaves! Many an autumn car fire has started when a hot catalytic converter ignited the pile of leaves beneath it.

1220. Does it make sense to raise the thermostat setting on your air conditioner when you leave your house, since when you come back, you have to lower it again and the unit has to work more? Are there any energy savings? — AN, Herndon, VA
You will save energy and money by raising the thermostat setting when you leave your home and then lower it again when you return. That's because the rate at which heat flows into your home from outside is roughly proportional to the difference between the indoor and outdoor temperatures. By letting the indoor temperature rise, you slow the heat flow into your home. With less heat flowing into your home, the air conditioner doesn't have to pump as much heat outside and that saves energy. Moreover, an air conditioner is more energy efficient when the indoor temperature is closer to the outdoor temperature, so letting the indoor air warm up saves even more energy. While the air conditioner does have to work steadily for a while when you return to your home, its efficiency is still good during that time and the energy saved while you were away more than makes up for the energy consumed when you return.

1251. How does an automatic transmission in a car work? — ORL, Trondheim, Norway
An automatic transmission contains two major components: a fluid coupling that controls the transfer of torque from the engine to the rest of the transmission and a gearbox that controls the mechanical advantage between the engine and the wheels. The fluid coupling resembles two fans with a liquid circulating between them. The engine turns one fan, technically known as an "impeller," and this impeller pushes transmission fluid toward the second impeller. As the liquid flows through the second impeller, it exerts a twist (a "torque") on the impeller. If the car is moving or is allowed to move, this torque will cause the impeller to turn and, with it, the wheels of the car. If, however, the car is stopped and the brake is on, the transmission fluid will flow through the second impeller without effect. Overall, the fluid coupling allows the efficient transfer of power from the engine to the wheels without any direct mechanical linkage that would cause trouble when the car comes to a stop.

Between the second impeller and the wheels is a gearbox. The second impeller of the fluid coupling causes several of the gears in this box to turn and they, in turn, cause other gears to turn. Eventually, this system of gears causes the wheels of the car to turn. Along with these gears are several friction plates that can be brought into contact with one another by the transmission to change the relative rotation rates between the second impeller and the car's wheels. These changes in relative rotation rate give the car the variable mechanical advantage it needs to be able to both climb steep hills and drive fast on flat roadways.

Finally, some cars combine parts of the gear box with the fluid coupling in what is called a "torque converter." Here the two impellers in the fluid coupling have different shapes so that they naturally turn at different rates. This asymmetric arrangement eliminates the need for some gears in the gearbox itself.

1458. What is the difference between spark ignition engines and diesel engines? — JC
Just before burning their fuels, both engines compress air inside a sealed cylinder. This compression process adds energy to the air and causes its temperature to skyrocket. In a spark ignition engine, the air that's being compressed already contains fuel so this rising temperature is a potential problem. If the fuel and air ignite spontaneously, the engine will "knock" and won't operate at maximum efficiency. The fuel and air mixture is expected to wait until it's ignited at the proper instant by the spark plug. That's why gasoline is formulated to resist ignition below a certain temperature. The higher the "octane" of the gasoline, the higher its certified ignition temperature. Virtually all modern cars operate properly with regular gasoline. Nonetheless, people frequently put high-octane (high-test or premium) gasoline in their cars under the mistaken impression that their cars will be better for it. If your car doesn't knock significantly with regular gasoline, use regular gasoline.

A diesel engine doesn't have spark ignition. Instead, it uses the high temperature caused by extreme compression to ignite its fuel. It compresses pure air to high temperature and pressure, and then injects fuel into this air. Timed to arrive at the proper instant, the fuel bursts into flames and burns quickly in the superheated compressed air. In contrast to gasoline, diesel fuel is formulated to ignite easily as soon as it enters hot air.
The Automobiles Home Page
The Complete Collection of Questions about Automobiles (3 pages, from oldest to newest):
Previous 1 2 3 

Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy