How Everything Works
How Everything Works How Everything Works
 

QUESTIONS AND ANSWERS
 
Audio Amplifiers
Page 1 of 4 (32 Questions and Answers)

278. Does an (audio) amplifier benefit from using matched pairs of power transistors?
Permalink
A decade or two ago, it was important to match the power transistors used to control currents leaving an audio amplifier. If the transistor that controlled current flowing one direction through the speaker was significantly different from the transistor that controlled current flowing in the opposite direction, then the sound reproduction would be poor. That's because the current flows would be asymmetric and asymmetric currents lead to distorted sounds from the speaker. The most common measure of this sort of error is called "total harmonic distortion," an indication of how much power the amplifier puts into unwanted high frequency currents. Without carefully matched power transistors, an amplifier might put several percent of its power into these harmonic frequencies.

However, modern audio amplifiers generally use feedback techniques to correct for their own internal imperfections. They can compensate so well for mismatches in their components that total harmonic distortion has virtually disappeared from amplifiers. Amplifiers are still rated according to total harmonic distortion, but now it is rarely more than a few thousandths of a percent and depends more on the feedback techniques used than on the perfection of the power switching components. In short, the power transistors in modern amplifiers don't have to be matched well any more.


279. How does the coil in a microphone turn sound into electric current?
Permalink
The coil in a microphone is attached to a movable surface that is pushed back and forth by the sound. Near the coil is a magnet so that, as the coil moves, the magnet induces electrical currents in it. Whenever a magnet moves past a coil of wire or a coil of wire moves past a magnet, a current is induced in that coil of wire.

280. How is sound made by a speaker?
Permalink
As the current passing through the speaker's coil changes, the speaker cone moves back and forth toward or away from the speaker's permanent magnet. This moving cone pushes or pulls on the air, creating compressions and rarefactions that propagate through the air as sound.

281. Is the transistor in an audio amplifier used even during silent moments?
Permalink
During the silent passages of the music, the amplifier does not vary the amount of current passing through the speaker so that the speaker doesn't move and doesn't produce sound. To conserve energy and to avoid heating up the speaker, a good amplifier doesn't send any current through the speaker during a quiet passage. Whether or not the amplifier actually consumes power during the quiet passage depends on the exact design of the amplifier. Some stereo experts claim that they can hear the differences between amplifiers the do or do not consume power with their output transistors during the quiet times and claim that the power wasting amplifiers sound better.

492. What is the difference between a tube amplifier and a solid-state amplifier? Does the human ear prefer one over the other?
Permalink
The only difference between a well-designed tube amplifier and a well-designed solid-state amplifier is the device doing the amplification. In fact, a vacuum tube and an metal-oxide-semiconductor field-effect-transistor or MOSFET are extremely similar in behavior, so that amplifiers built with the two devices can be extremely similar. If these amplifying devices are used properly in a good amplifier, that amplifier should only boost the power of its input signal and shouldn't add anything that wasn't present in the input signal. As a result, you shouldn't be able to tell whether the audio amplifier you are listening to is based on tubes or on solid-state components.

497. How do a diode and a transistor work?
Permalink
A diode is normal built by touching two different pieces of semiconductor together to form what is called a "p-n junction." Semiconductors are materials that are in between good conductors and good insulators. A pure semiconductor is a very poor conductor of electricity. With careful chemical processing, a semiconductor can be made into n-type semiconductor—a semiconductor that contains a small number of mobile electrons that permit it to carry electric current. With different processing, a semiconductor can also be made into p-type semiconductor—a semiconductor that contains a small number of mobile holes for electrons that permit it to carry electric current. It may seem strange that a hole for an electron can allow electricity to flow, but imagine a highway packed with cars (electrons) bumper to bumper. If there are a couple of empty places (holes) in the bumper-to-bumper traffic, then cars (electrons) can rearrange enough that the traffic can flow. Both mobile electrons and mobile holes allow these two chemically treated semiconductors to carry current.

When an n-type semiconductor touches a p-type semiconductor, a diode is formed. The mobile electrons at the edge of the n-type semiconductor flow over the boundary (a p-n junction) and fill the mobile holes at the edge of the p-type semiconductor. This rearrangement creates a depletion region—a region near the p-n junction in which there are neither mobile electrons nor mobile holes. This depletion region normally won't carry electricity at all. But if you push electrons onto the n-type semiconductor, they will flow toward the p-n junction and replenish the missing mobile electrons. As these mobile electrons approach the p-n junction, they will repel the electrons that are filling the mobile holes on the p-type side of the junction and reopen the mobile holes. Electrons will begin to cross the p-n junction and current will flow through the diode. However, if you push electrons onto the p-type semiconductor, they will fill even more of the mobile holes there and the depletion region near the p-n junction will grow larger and more uncrossable. No current will flow through the diode. Thus a diode (a p-n junction) only carries current in one direction—electrons can only flow from the n-type semiconductor side to the p-type semiconductor side.

There are many types of transistors, so I will only describe an n-channel Metal-Oxide-Semiconductor Field Effect Transistor, or n-channel MOSFET. In this device, three layers of semiconductors are sandwiched together: an n-type piece (the source), a long, thin p-type piece (the channel), and another n-type piece (the drain). Two p-n junctions form between these three components and, since the junctions are arranged in opposite directions, they completely block current flow from the source through the channel to the drain. But a metal surface (the gate) that's separated from the channel by an extremely thin layer of oxide insulator can control the number of electrons on the channel material. If you put even a tiny bit of positive charge on the gate, it will attract electrons onto the channel and turn it from p-type semiconductor to n-type semiconductor. When that happens, both p-n junctions vanish and current can flow from the source to the drain. The MOSFET goes from being an insulating device when there is no charge on the gate to a conductor when there is charge on the gate! This property allows MOSFETs to amplify signals and control the movements of electric charge, which is why MOSFETs are so useful in electronic devices such as stereos, televisions, and computers.


508. How does an electric guitar amplify the sound from the strings?
Permalink
As the steel strings of an electric guitar vibrate, they move back and forth across electromagnetic pickups on the guitar's surface. Each of these pickups consists of a coil of wire with a permanent magnet passing through its center. This permanent magnet has a north magnetic pole at one end and a south magnetic pole at the other end. Surrounding the permanent magnet are lines of magnetic flux that arc gracefully through space from the magnet's north pole to its south pole. These magnetic flux lines are associated with the forces that magnets exert on one another. Some of these flux lines pass very near the permanent magnet on their way from the north pole to the south pole and thus pass inside the coil of wire around the magnet. Other flux lines arc far outward and pass outside the coil of wire around the magnet. And a few of the flux lines pass through the steel string that lies just above one pole of the permanent magnet. Steel is a ferromagnetic metal, meaning that it easily develops strong north and south poles of its own when exposed to another magnet. This ferromagnetism is the result of a remarkable ordering process that takes place among the electrons inside the steel. The steel string is magnetized by its proximity to the permanent magnet in the pickup and it interacts strongly with the magnetic flux lines that pass near it. Some flux lines leaving the north pole of the permanent magnet connect to the south pole of the magnetized string and an equal number of flux lines leaving the north pole of the magnetized string connect to the south pole of the permanent magnet. Thus when the steel string vibrates back and forth, it pulls some of the flux lines with it. The paths that these flux lines take shift back and forth rhythmically as the string vibrates.

Whenever magnetic flux lines move, they create electric fields. An electric field is a phenomenon that exerts forces on charged particles, such as the mobile electrons in the coil of wire around the permanent magnet. As the string vibrates and the magnetic flux lines shift back and forth with it, electric fields appear in the wire coil and begin to push electrons through that coil. These electrons flow back and forth in the wire as the string vibrates. Wires connecting the pickup's coil to an electronic audio amplifier carry these moving electrons (actually an electric current) to the amplifier, where they are detected and used to control a much larger electric current. When this amplified current is sent through a speaker, the speaker produces a very loud sound that's an amplified version of the sound that the string itself is making as it pushes weakly on the air.


517. How are some light emitting diodes able to emit more than one color? Can light emitting diodes emit different amounts of light or can they only be on or off?
Permalink
Light emitting diodes (LEDs) that emit more than one color are actually two different LEDs connected to a single circuit in opposite directions. When current flows in one direction around that circuit, one of the LEDs emits light. When the current reverses directions, the other LED emits light. And when the current reverses directions rapidly, both LEDs emit light alternately. If one LED emits red light and the other green light, then the overall device will appear yellow or orange when they are both operating alternately in rapid sequence. The amount of light that an LED emits depends on the current flowing through it—the more electrons that are falling into holes in the p-type semiconductor, the more light that's being emitted. However, many devices that use LEDs just turn them on or off because that's easier than controlling the current flowing through them. Some day, flat panel displays may use three colors of LEDs—red, green, and blue—in order to present full color images like those on a current television screen. For that scheme to work, the LEDs must be able to emit different brightnesses, so the current flowing through each one must be adjustable.

518. How do light emitting diodes work and what is responsible for their different colors?
Permalink
Light emitting diodes are diodes that have been specially designed to emit light rather than heat during their operations. Whenever current is flowing through a diode, electrons are moving from the n-type semiconductor on one side of the diode's p-n junction to the p-type semiconductor on the other side of the junction. Once an electron (which is negatively charged) arrives in the p-type semiconductor, it's attracted toward an electron hole (which is positively charged) and the two move together. The electron soon fills the hole and it releases a small amount of energy when it does. In a normal diode, electrons lose energy at a rate of 0.6 joules of energy per coulomb of charge as they recombine with the electron holes. That means that the current flowing through the normal diode loses 0.6 volts as it flows through the diode. The missing energy becomes thermal energy or heat.

But in a light emitting diode (an LED), each electron that arrives in the p-type semiconductor after crossing the p-n junction recombines with an electron hole in a remarkable way. It gives up its extra energy as light! Each time an electron and an electron hole recombine, they emit one particle of light, a photon, and the frequency, wavelength, and color of that light depends on the amount of energy given up by the electron as it falls into the electron hole. The semiconductor material from which an LED is made has a characteristic called its band gap. This band gap measures the energy needed to pull an electron away from an electron hole in the material. If this band gap is small, the LED will emit infrared light. If this band gap is larger, the LED will emit red, orange, yellow, green, or even blue light (the farther to the right in that list, the more energy is required). Because each electron loses more energy in recombining with an electron hole in an LED than it would in a normal diode, the current flowing through an LED loses more voltage (typically 2 volts for red LEDs and as much as 4 volts for blue LEDs) than does the current flowing through a regular diode (typically 0.6 volts).

Physicists, chemists, materials scientists, and engineers have been working for years to perfect the materials used in LEDs, making them more and more efficient at turning the electrons' energies into light. Until recently, there were no suitable materials from which to build blue LEDs, but recent developments of large band gap semiconductors have made blue LEDs possible. In fact, even blue laser diodes are now being made. A laser diode is a specially designed LED in which all of the photons are copies of one another rather than being emitted independently by the individual electrons as they drop into their respective electron holes.

One final note: it's now possible to obtain a "white" LED! This device is actually a blue LED, combined with a fluorescent phosphor that converts the blue light into white light.


556. How do you calculate total speaker impedance? For example, 4 speakers wired in series or parallel. Is there a formula? — PV, Atlanta, GA
Permalink
You can calculate the impedance of a collection of speakers the same way you would calculate the resistance of a collection of resistors. Each time two speakers are connected in series, so that the electric current must pass through one and then the other to get to its destination, their impedances add. Thus two 4-ohm speakers in series are equivalent to one 8-ohm speaker (4 ohm + 4 ohm = 8 ohm). Each time two speakers are connected in parallel, so that the electric current can pass through one or the other to get to its destination, the reciprocals of their impedances add to give the reciprocal of their overall impedance. Thus two 4-ohm speakers in parallel are equivalent to one 2-ohm speaker (1/4 ohm + 1/4 ohm = 1/2 ohm). Once you have figured out the impedance of a pair of speakers, you can treat it as though it were one speaker and proceed to figure out the impedance of a larger group of speakers. For example, four 4-ohm speakers in series have an overall impedance of 16 ohms and four 4-ohm speakers in parallel have an overall impedance of 1 ohm.

www.HowEverythingWorks.org
The Audio Amplifiers Home Page
The Complete Collection of Questions about Audio Amplifiers (4 pages, from oldest to newest):
1 2 3 4 Next 

Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy