How Everything Works
How Everything Works How Everything Works
 

QUESTIONS AND ANSWERS
 
Air Conditioners
Page 2 of 2 (16 Questions and Answers)

1244. You stated (elsewhere) that thermodynamics overwhelms just about everything sooner or later. Could you explain why? — MT, San Antonio, TX
Permalink
One of the principal observations of thermodynamics (and statistical mechanics, a related field) is that vast, complicated systems naturally evolve from relatively unlikely arrangements to relatively likely arrangements. This trend is driven by the laws of probability and the fact that improbable things don't happen often. Here's an example: consider your sock drawer, which contains 100 each of red and blue socks (it's a large drawer and you really like socks). Suppose you arrange the drawer so that all the red socks are on one side and all the blue socks are on the other. This arrangement is highly improbable—it didn't happen by chance; you caused it to be ordered. If you now turn out the light and randomly exchange socks within the drawer, you're awfully likely to destroy this orderly situation. When you turn the light back on, you will almost certainly have a mixture of red and blue socks on each side of the drawer. You could turn the light back out and try to use chance to return the socks to their original state, but your chances of succeeding are very small. Even though the system you are playing with has only 200 objects in it, the laws of probability are already making it nearly impossible to order it by chance alone. By the time you deal with bulk matter, which contains vast numbers of individual atoms or electrons or bits of energy, chance and the laws of probability dominate everything. Even when you try to impose order on a system, the laws of probability limit your success: there are no perfect crystals, perfectly clean rooms, flawless structures. These objects aren't forbidden by the laws of motion, they are simply too unlikely to ever occur.

1250. Is there a formula or equation for figuring out the pressure of air at a certain altitude? — DLH, Conifer CO
Permalink
Unfortunately, the answer is no. The atmosphere is too complicated to be described by a simple formula or equation, although you can always fit a formulaic curve to measured pressure values if you make that formula flexible enough. The complications arise largely because of thermodynamic issues: air expands as it moves upward in the atmosphere and this expansion causes the air to cool. As a result of this cooling, the air in the atmosphere doesn't have a uniform temperature and, without a uniform temperature, the air's pressure is difficult to predict. Radiative heating of the greenhouse gases and phase changes in the air moisture content further complicate the atmosphere's temperature profile and consequently its pressure profile. If you want to know the air pressure at specific altitude, you do best to look it up in a table.

1257. Why is there always snow on mountaintops, even if the weather in the valley is not cold? — GV, El Paso, Texas
Permalink
The atmosphere maintains a natural temperature gradient of about 10° C (which is equivalent to 18° F) per kilometer in dry air and about 6 or 7° C (which is equivalent to about 12° F) per kilometer in moist air. The higher you look in the lower atmosphere, the colder the air is. Because of this gradient, it may be 20° C (68° F) in the valley and 0° C (32° F) at the top of a 2,000 meter high mountain.

This temperature gradient has its origin in the physics of gases—when a gas expands and does work on its surroundings, its temperature decreases. To see why this effect is important, imagine that you have a plastic bag that's partially filled with valley air. If you carry this bag up the side of the mountain, you will find that the bag's volume will gradually increase. That's because there will be less and less air overhead as you climb and the pressure that this air exerts on the bag will diminish. With less pressure keeping it small, the air in the bag will expand and the bag will fill up more and more. But for the bag's size to increase, it must push the air around it out of the way. Pushing this air away takes work and energy, and this energy comes from the valley air inside the bag. Since the valley air has only one form of energy it can give up—thermal energy—its temperature decreases as it expands. By the time you reach the top of the mountain, your bag of valley air will have cooled dramatically. If it started at 20° C, its temperature may have dropped to 0° C, cold enough for snow.

If you now turn around and walk back down the mountain, the increasing air pressure will gradually squeeze your bag of valley air back down to its original size. In doing do, the surrounding air will do work on your valley air, giving it energy, and will increase that air's thermal energy—the valley air will warm up! When you reach the valley, the air in your bag will have returned to its original temperature.

Air often rises and falls in the atmosphere and, as it does, it experiences these same changes in temperature. Air cools as it blows up into the mountains (often causing rain to form) and warms as it flows down out of the mountains (producing dry mountain winds). These effects maintain a temperature gradient in the atmosphere that allows snow to remain on mountaintops even when it's relatively warm in the valleys.


1409. How do propane or kerosene refrigerators work—ones that require no electricity at all and are called "ice from fire" units? — KN
Permalink
Heater-based refrigerators make use of an absorption cycle in which a refrigerant is driven out of solution as a gas in a boiler, condenses into a liquid in a condenser, evaporates back into a gas in an evaporator, and finally goes back into solution in an absorption unit. The cooling effect comes during the evaporation in the evaporator because converting a liquid to a gas requires energy and thus extracts heat from everything around the evaporating liquid.

The most effective modern absorption cycle refrigerators use a solution of lithium bromide (LiBr) in water. What enters the boiler is a relatively dilute solution of LiBr (57.5%) and what leaves is dense, pure water vapor and a relatively concentrated solution of LiBr (64%). The pure water vapor enters a condenser, where it gives up heat to its surroundings and turns into liquid water. To convert this liquid water back into gas, all that has to happen is for its pressure to drop. That pressure drop occurs when the water enters a low-pressure evaporator through a narrow orifice. As the water evaporates, it draws heat from its surroundings and refrigerates them.

Finally, something must collect this low pressure water vapor and carry it back to the boiler. That "something" is the concentrated LiBr solution. When the low-pressure water vapor encounters the concentrated LiBr solution in the absorption unit, it quickly goes back into solution. The solution becomes less concentrated as it draws water vapor out of the gas above it. This diluted solution then returns to the boiler to begin the process all over again.

Overall, the pure water follows one path and the LiBr solution follows another. The pure water first appears as a high-pressure gas in the boiler (out of the boiling LiBr solution), converts to a liquid in the condenser, evaporates back into a low-pressure gas in the evaporator, and finally disappears in the absorption unit (into the cool LiBr solution). Meanwhile, the LiBr solution shuttles back and forth between the boiler (where it gives up water vapor) and the absorption unit (where it picks up water vapor). The remarkable thing about this whole cycle is that its only moving parts are in the pump that moves LiBr solution from the absorption unit to the boiler. Its only significant power source is the heater that operates the boiler. That heater can use propane, kerosene, electricity, waste heat from a conventional power plant, and so on.


1489. Which is more economical: operating our air conditioner at 75 °F or operating it at 78 °F and putting fans in front of the vents? - T
Permalink
When you put fans in front of the vents, you are probably causing the air conditioner to pump roughly the same amount of heat out of the room air as it would at 75 °F without the fans. As a result, the fans probably aren't making the air conditioner work less and aren't saving much electricity. In fact, the fans themselves consume electricity and produce heat that the air conditioner must then remove, so in principle the fans are a waste of energy.

However, if the fans are directing the cold air in a way that makes you more comfortable without having to cool all the room air or if the fans are creating fast moving air that cools you via evaporation more effectively, then you may be experiencing a real savings of electricity.

To figure out which is the case, you'd have to log the time the air conditioner cycles on during a certain period while the fans were off and the thermostat set to 75 °F and then repeat that measurement during a similar period with the fans on and the thermostat set to 78 °F. If the fans significantly reduce the units runtime while leaving you just as comfortable, then you're saving power.


1505. I have noticed that the more I stir the milk into my coffee, the hotter it gets, even though the milk is cold. How does it work?
Permalink
Stirring the coffee involves a transfer of energy from you to the coffee. That's because you are doing physical work on the coffee by pushing it around as it moves in the direction of your push. What began as chemical energy in your body becomes thermal energy in the coffee. That said, the amount of thermal energy you can transfer to the coffee with any reasonable amount of stirring is pretty small and you'd lose patience with the process long before you achieved any noticeable rise in coffee temperature. I think that the effect you notice is more one of mixing than of heating. Until you mix the milk into the coffee, you may have hot and cold spots in your cup and you may notice the cold spots most strongly.

www.HowEverythingWorks.org
The Air Conditioners Home Page
The Complete Collection of Questions about Air Conditioners (2 pages, from oldest to newest):
Previous 1 2 

Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy