How Everything Works
How Everything Works How Everything Works
 

QUESTIONS AND ANSWERS
 
Question 971

What types of gas are used in light bulbs and how do their effects differ? — SF, Westfield, NJ
The glass envelope of an incandescent bulb can't contain air because tungsten is flammable when hot and would burn up if there were oxygen present around it. One of Thomas Edison's main contributions to the development of such bulbs was learning how to extract all the air from the bulb. But a bulb that contains no gas won't work well because tungsten sublimes at high temperatures—its atoms evaporate directly from solid to gas. If there were no gas in the bulb, every tungsten atom that left the filament would fly unimpeded all the way to the glass wall of the bulb and then stick there forever. While there are some incandescent bulbs that operate with a vacuum inside, most common incandescent lamps contain a small amount of argon and nitrogen gases.

Argon and nitrogen are chemically inert, so that the tungsten filament can't burn in the argon and nitrogen, and each argon atom or nitrogen molecule is massive enough that when a tungsten atom that's trying to leave the filament hits it, that tungsten atom may rebound back onto the filament. The argon and nitrogen gases thus prolong the life of the filament. Unfortunately, these gases also convey heat away from the filament via convection. You can see evidence of this convection as a dark spot of tungsten atoms that accumulate at the top of the bulb. That black smudge consists of tungsten atoms that didn't return to the filament and were swept upward as the hot argon and nitrogen gases rose.

However, some premium light bulbs contain krypton gas rather than argon gas. Like argon, krypton is chemically inert. But a krypton atom is more massive than an argon atom, making it more effective at bouncing tungsten atoms back toward the filament after they sublime. Krypton gas is also a poorer conductor of heat than argon gas, so that it allows the filament to convert its power more efficiently into visible light. Unfortunately, krypton is a rare constituent of our atmosphere and very expensive. That's why it's only used in premium light bulbs, together with some nitrogen gas.

Incidentally, the filament in many incandescent bulbs is treated with a small amount of a phosphorus-based "getter" that reacts with any residual oxygen that may be in the bulb the first time the filament becomes hot. That's how the manufacturer ensures that there will be no oxygen in the bulb for the tungsten filament to react with.

         

Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy