How Everything Works
How Everything Works How Everything Works

Question 682

Does water drain in the opposite direction in the southern hemisphere? - TL
In principle, yes, but in practice, no. To explain why, I'll begin with the origins of directional circulations on earth. Because the earth is turning, motions along its surface are complicated. The ground at the equator is actually heading eastward at more than 1000 miles per hour. The ground north or south of the equator is also heading eastward, but not as quickly. The ground's eastward speed gradually diminishes until, at the north and south poles, there is no eastward motion at all. As a result of this non-uniform eastward motion of the ground, objects that travel in straight lines because of their inertia end up drifting eastward or westward relative to the ground. For example, if you took an object at the equator and threw it directly northward, it would drift eastward relative to the more slowly moving ground. If someone else threw an object southward from the north pole, that object would drift westward relative to the more rapidly moving ground. In the northern hemisphere, objects approaching a center tend to deflect away from that center to form a counter-clockwise circle around it. This process is reversed in the southern hemisphere so that objects approaching a center there tend to form a clockwise circle around it. Thus hurricanes are counter-clockwise in the northern hemisphere and clockwise in the southern hemisphere.

When water drains from a basin in the northern hemisphere, it flows toward a center and should have a tendency to deflect into a counter-clockwise swirl. However, the effect is very weak in a small washbasin. The direction in which the water swirls as it drains is determined by other effects such as how the water was sloshing before you opened the drain or how symmetric the basin is. For this earth's rotation-driven swirling effect (the Coriolis effect) to dictate the direction of a circulation the objects involved must move long distances over the earth's surface. Even tornadoes don't always rotate in the expected direction; they're just not big enough to be spun consistently by the Coriolis effect.


Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy