How Everything Works
How Everything Works How Everything Works

Question 633

How does electricity work and is it possible to design a light bulb that will let you know when it is about to stop working? — LS, Chicago, IL
Electricity involves electric charges. While static electricity involves stationary electric charges, the electricity you are probably referring to is dynamic: electricity in which the electric charges move. Most (dynamic) electricity is the movement of electrons—tiny negatively charged particles that form the outer part of atoms. The electricity in the wires leading to and from a lamp is the flow of electrons through those wires. A lamp has two wires attached to it because the electrons flow into the lamp through one wire and out through the other wire. However, because the electricity we normally use is alternating current, the direction in which the electrons flow through those two wires reverses 120 times a second (60 full cycles of reversal, over and back, each second).

As the electrons flow through the lamp's filament, they leave behind much of their energy. This energy is deposited in the tiny filament and the filament becomes extremely hot. It begins to emit much of its thermal energy as thermal radiation, part of which is visible light. So you can think of the electricity as a steady stream of tiny delivery trucks (the electrons), carrying energy to the lamp's filament, and then returning to the power company to pick up some more energy. The filament sends this energy into the room as heat and light.

When a light bulb burns out, it's because the filament has became so thin that a section of it has overheated and melted. This thinning process is caused by the slow evaporation (or actually sublimation) of tungsten atoms from the filament. A thinned filament usually fails as you turn the bulb on because that's the time of maximum power delivery to the filament and thus maximum stress. Unfortunately, it's very hard to tell in advance whether the filament will be able to tolerate the next attempt to turn it on. Probably the best predictor is the number of hours the bulb has been on. If you always replace a bulb after it has operated for 750 hours at full power, you'll probably avoid most outages.


Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy