How Everything Works
How Everything Works How Everything Works

Question 1553: Can special eyeglasses let you see invisible radiation?

I've read reference to "Smart" eyeglasses or contact lenses that can present more than just the visible portion of the electromagnetic spectrum. I'm wondering if you have any sources for these type of devices that are available to we civilians. GJ, Wells, Nevada
Since our eyes are only sensitive to light that's in the visible range, any "smart" optical system would have to present whatever it detects as visible light. That means it has to either shift the frequencies/wavelengths of non-visible electromagnetic radiation into the visible range or image that non-visible radiation and present a false-color reproduction to the viewer. Let's consider both of these schemes.

The first approach, shifting the frequencies/wavelengths, is seriously difficult. There are optical techniques for adding and subtracting optical waves from one another and thereby shifting their frequencies/wavelengths, but those techniques work best with the intense waves available with lasers. For example, the green light produced by some laser pointers actually originated as invisible infrared light and was doubled in frequency via a non-linear optical process in a special crystal. The intensity and pure frequency of the original infrared laser beam makes this doubling process relatively efficient. Trying to double infrared light coming naturally from the objects around you would be extraordinarily inefficient. In general, trying to shift the frequencies/wavelengths of the various electromagnetic waves in your environment so that you can see them is pretty unlikely to ever work as a way of seeing the invisible portions of the electromagnetic spectrum.

The second approach, imaging invisible portions of the electromagnetic spectrum and then presenting a false-color reproduction to the viewer, is relatively straightforward. If it's possible to image the radiation and detect it, it's possible to present it as a false-color reproduction. I'm talking about a camera that images and detects invisible electromagnetic radiation and a computer that presents a false-color picture on a monitor. Imaging and detecting ultraviolet and x-ray radiation is quite possible, though materials issues sometimes makes the imaging tricky. Imaging and detecting infrared light is easy in some parts of the infrared spectrum, but detection becomes problematic at long wavelengths, where the detectors typically need to be cooled to extremely low temperatures. Also, the resolution becomes poor at long wavelengths.

Camera systems that image ultraviolet, x-ray, and infrared radiation exist and you can buy them from existing companies. They're typically expensive and bulky. There are exceptions such as near-infrared cameras silicon imaging chips are quite sensitive to near infrared and ordinary digital cameras filter it out to avoid presenting odd-looking images. In other words, the camera would naturally see farther into the infrared than our eyes do and would thus present us with images that don't look normal.

In summary, techniques for visualizing many of the invisible portions of the electromagnetic spectrum exist, but making them small enough to wear as glasses... that's a challenge. That said, it's probably possible to make eyeglasses that image and detect infrared or ultraviolet light and present false-color views to you on miniature computer monitors. Such glasses may already exist, although they'd be expensive. As for making them small enough to wear as contact lenses... that's probably beyond what's possible, at least for the foreseeable future.


Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy