How Everything Works
How Everything Works How Everything Works
 

QUESTIONS AND ANSWERS
 
Question 1448

Why do faster moving fluids have lower pressure? — JH
Actually, faster moving fluids don't necessarily have lower pressure. For example, a bottle of compressed air in the back of a pickup truck is still high-pressure air, even though it's moving fast. The real issue here is that when fluid speeds up in passing through stationary obstacles, its pressure drops. For example, when air rushes into the open but stationary mouth of a vacuum cleaner, that air experiences not only a rise in speed, it also experiences a drop in pressure. Similarly, when water rushes out of the nozzle of a hose, its speed increases and its pressure drops. This is simply conservation of energy: as the fluid gains kinetic energy, it must lose pressure energy. However, if there are sources of energy around—fans, pumps, or moving surfaces—then these exchanges of pressure for speed may no longer be present. That's why I put in the qualifier of there being only stationary obstacles.
         

Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy