Return to Home Page QUESTIONS AND ANSWERS Organized by Topics Select Topic Air Conditioners Airplanes Audio Amplifiers Automobiles Balloons Balls, Birdies, and Frisbees Bicycles Bouncing Balls Cameras Centrifuges and Roller Coasters Clocks Clothing and Insulation Compact Disc Players Computers Electric Motors Electric Power Distribution Electric Power Generation Electronic Air Cleaners Elevators Falling Balls Flashlights Fluorescent Lamps Incandescent Light Bulbs Knives and Steel Lasers Magnetically Levitated Trains Medical Imaging and Radiation Microwave Ovens Nuclear Reactors Nuclear Weapons Plastics Radio Ramps Rockets Seesaws Spring Scales Sunlight Tape Recorders Telescopes and Microscopes Television The Sea and Surfing Thermometers and Thermostats Vacuum Cleaners Violins and Pipe Organs Water Distribution Water Faucets Water, Steam, and Ice Wheels Windows and Glass Wood Stoves Xerographic Copiers Other Topics All Questions & Answers Ask a Question

 Question 1408

 If one metric ton of antimatter comes into contact with one metric ton of matter, how much energy would be released? — TC
Since the discovery of relativity, people have recognized that there is energy associated with rest mass and that the amount of that energy is given by Einstein's famous equation: E=mc2. However, the energy associated with rest mass is hard to release and only tiny fractions of it can be obtained through conventional means. Chemical reactions free only parts per billion of a material's rest mass as energy and even nuclear fission and fusion can release only about 1% of it. But when equal quantities of matter and antimatter collide, it's possible for 100% of their combined rest mass to become energy. Since two metric tons is 2000 kilograms and the speed of light is 300,000,000 meters/second, the energy in Einstein's formula is 1.8x1020 kilogram-meters2/second2 or 1.8x1020 joules. To give you an idea of how much energy that is, it could keep a 100-watt light bulb lit for 57 billion years.