How Everything Works
How Everything Works How Everything Works

Question 1276

How do airplanes work? What is the engineering behind how an airplane flies? — ZJ, Bangalore, India
An airplane supports itself in flight by deflecting the passing airstream downward. The plane's wings push this airstream downward and the airstream reacts by pushing the wings upward. This action/reaction effect is an example of Newton's third law of motion, which observes that forces always come in equal but oppositely directed pairs: if one object pushes on another, then the second object must push back on the first object with a force of equal strength pointing in the opposite direction. Even air obeys this law so that when the plane's wings push air downward, the air must push the wings upward in response. In level flight, the deflected air pushes upward so hard that it supports the entire weight of the plane. Just how the airplane's wings deflect the airstream downward to obtain this upward lift force is a marvel of fluid dynamics. We can view it from at least two perspectives: a Newtonian perspective which concentrates on the accelerations of the passing airstream and a Bernoullian perspective which concentrates on speeds and pressures in that airstream.

The Newtonian perspective is the most intuitive and where we will start. The airstream arriving at the forward or "leading" edge of the airplane wing splits into two separate flows that travel over and under the wing, respectively. The wing is shaped and tilted so that these two flows experience very different accelerations as they travel around the wing. The flow that goes under the wing encounters a downward sloping surface that pushes it downward and it accelerates downward. In response to this downward push, the air pushes upward on the bottom of the wing and provides part of the force that supports the plane.

The air that flows over the wing follows a more complicated route. At first, this flow encounters an upward sloping surface that pushes it upward and it accelerates upward. In response to this upward force, the air pushes downward on the leading portion of the wing's top surface. But the wing's top surface is curved so that it soon begins to slope downward rather than upward. When this happens, the airflow must accelerate downward to stay in contact with it. A suction effect appears, in which the rear or "trailing" portion of the wing's top surface sucks downward on the air and the air sucks upward on it in response. This upward suction force more than balances the downward force at the leading edge of the wing so that the air flowing over the wing provides an overall upward force on the wing.

Since both of these air flows produce upward forces on the wing, they act together to support the airplane's weight. The air passing both under and over the wings is deflected downward and the plane remains suspended.

In the Bernoullian view, air flowing around a wing's sloping surfaces experiences changes in speed and pressure that lead to an overall upward force on the wing. The fact that each speed change is accompanied by a pressure change is the result of a conservation of energy in air passing a stationary surface—when the air's speed and motional energy increase, the air's pressure and pressure energy must decrease to compensate. In short, when air flowing around the wing speeds up, its pressure drops and when it slows down, its pressure rises.

When air going under the wing encounters the downward sloping bottom surface, it slows down. As a result, the air's pressure rises and it exerts a strong upward force on the wing. But when air going over the wing encounters the up and down sloping top surface, it slows down and then speeds up. As a result, the air's pressure first rises and then drops dramatically, and it exerts a very weak overall downward force on the wing. Because the upward force on the bottom of the wing is much stronger than the downward force on the top of the wing, there is an upward overall pressure force on the wing. This upward force can be strong enough to support the weight of the airplane.

But despite the apparent differences between these two descriptions of airplane flight, they are completely equivalent. The upward pressure force of the Bernoullian perspective is exactly the same as the upward reaction force of the Newtonian perspective. They are simply two ways of looking at the force produced by deflecting an airstream, a force known as lift.


Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy