How Everything Works
How Everything Works How Everything Works
 

QUESTIONS AND ANSWERS
 
Question 1263

What are the effects of water pressure on fish, submarines and divers?
All three of these objects contain solids, liquids, and gases, so I'll begin by describing how pressure affects those three states of matter. Solids and liquids are essentially incompressible, meaning that as the pressure on a solid or a liquid increases, its volume doesn't change very much. Without extraordinary tools, you simply can't squeeze a liter of water or liter-sized block of copper into a half-liter container. Gases, on the other hand, are relatively compressible. With increasing pressure on it, a certain quantity of gas (as measured by weight) will occupy less and less volume. For example, you can squeeze a closet full of air into a scuba tank.

Applying these observations to the three objects, it's clear that the solid and liquid portions of these objects aren't affected very much by the pressure, but the gaseous portions are. In a fish or diver, the gas-filled parts (the swim bladder in a fish and the lungs in a diver) become smaller as the fish or diver go deeper in the water and are exposed to more pressure. In a submarine, the hull of the submarine must support the pressure outside so that the pressure of the air inside the submarine doesn't increase. If the pressure did reach the air inside the submarine, that air would occupy less and less volume and the submarine would crush. That's why the hull of a submarine must be so strong—it must hide the tremendous water pressure outside the hull from the air inside the hull.

Apart from these mechanical effects on the three objects, there is one other interesting effect to consider. Increasing pressure makes gases more soluble in liquids. Thus at greater depths and pressures, the fish and diver can have more gases dissolved in their blood and tissues. Decompression illness, commonly called "the bends", occurs when the pressure on a diver is suddenly reduced by a rapid ascent from great depth. Gases that were soluble in that diver's tissue at the initial high pressure suddenly become less soluble in that diver's tissue at the final low pressure. If the gas comes out of solution inside the diver's tissue, it causes damage and pain.

         

Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy