How Everything Works
How Everything Works How Everything Works
 

QUESTIONS AND ANSWERS
 
Question 1247

I work finding sites for cellular & PCS wireless telephone antennae. I would like to know how radio waves work and how they are able to carry voice and data information. What are these waves and do they exist naturally or do we set them up using electric charges? — PAB, Madison, WI
Radio waves are a class of electromagnetic waves, specifically the lowest frequency, longest wavelength electromagnetic waves. Actually, the electromagnetic waves used in cellular & PCS transmissions are technically known as microwaves because they have wavelengths of less than 1 meter, but there are no important differences between radio waves and microwaves.

Like all electromagnetic waves, radio waves and microwaves consist of coupled electric and magnetic fields that sustain one another in stable structures that move rapidly through empty space. Because an electromagnetic wave's electric field changes with time, it is able to create the wave's magnetic field and, because its magnetic field changes with time, that magnetic field is able to create the wave's electric field. Since they consist only of electric and magnetic fields, these waves cannot stay still—they must move (although you can trap them between mirrors so that they appear to stand in one place as they bounce back and forth). While they contain no true mass, they do contain energy and an electromagnetic wave carries energy from one place to another.

Electromagnetic waves are created whenever electrically charged particles change speed or direction; whenever they accelerate. Since there are accelerating electric charges everywhere—thermal energy keeps them moving about—there are also electromagnetic waves everywhere. But the radio waves used in communications systems are generated deliberately by moving electric charges back and forth. When charges are sent up and down a radio antenna, these charges are accelerating and they form complicated electric and magnetic fields that include electromagnetic waves. Once launched, those electromagnetic waves propagate through space at approximately the speed of light.

To send information with radio waves, a transmitter makes modifications in one or more the wave's characteristics. In an amplitude modulation scheme (AM), the transmitter changes the strength or "amplitude" of the wave to convey information—like sending radio smoke signals. In the frequency modulation scheme (FM), the transmitter changes the frequency of the wave to convey information—like whistling a tune with a complicated melody.

         

Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy