How Everything Works
How Everything Works How Everything Works

Question 1201

How does lightning damage electrical appliances that are properly grounded and have their power switches in the off position? Doesn't that eliminate a path for the electricity? — RDU, Atlanta, Georgia
When lightning strikes a power line, it pours enormous amounts of electric charge onto that wire. These like charges repel one another and they quickly spread out all over the wire. If this wire enters your home, the charges traveling along it will flow into any appliance that's plugged in, whether it's turned on or not. But if the appliance is turned off, this charge will reach the open switch and it will come to a stop, at least temporarily.

What matters then is just how much charge enters the appliance. The open switch would normally block the passage of electricity, which is why the appliance doesn't operate while it's turned off. But as charge accumulates on one side of the switch, the voltage at that point rises higher and higher. When the voltage becomes high enough, as it easily does after a lightning strike, the charges can leap into the air and travel to the other side of the switch even though the two sides don't touch one another. Another view of this disaster is that the like charges on one side of the switch repel one another so vigorously that some of them are pushed through the air to the other side of the switch. As a result of this movement of charges through the air—an electric arc—current passes through the appliance as though it were turned on. If this current exceeds what the appliance can tolerate, the appliance will be destroyed. Even grounding the appliance may not help—charges can flow uncontrollably through the appliance and, while some charges take paths to ground, others flow through sensitive components and destroy them.


Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy