How Everything Works
How Everything Works How Everything Works

Question 1161

What function does the Degauss button actually perform on computer monitors and why is it not available for televisions? — JF, San Francisco, California
Both color monitors and color televisions create their color images by combining the three primary colors of light—red, green, and blue. Each display has an intricate pattern of red, green, and blue phosphor dots or stripes on the inside surface of its picture tube and it produces full color images by adjusting the brightness balance of these tiny glowing spots. Beams of electrons are directed at these phosphors from the back of the picture tube and their impacts with the phosphors cause the phosphors to fluoresce—emit light.

Because the picture tube can't direct its electron beams accurately enough to hit specific red, green, or blue phosphor regions, it needs help from a shadow mask that's located a short distance before the phosphor layer. This thin metal grillwork shades the light-producing phosphors from the wrong electrons. The picture tube has three separate beams of electrons, one for each primary color, and the grillwork ensures that electrons in the red beam are only able to strike phosphors that produce red light. The same goes for the blue beam and the green beam.

The grillwork must stay in perfect registry with the pattern of phosphors on the inside of the picture tube, even as their temperatures change. That's why this grillwork is made of Invar, a special steel alloy that doesn't change size when its temperature changes. Unfortunately, Invar can be magnetized and its magnetic fields can then steer the electrons so that they strike the wrong phosphors. If you were to hold a strong magnet near the face of a computer monitor, you would probably magnetize the Invar shadow mask and spoil the color balance of the images on the monitor.

To demagnetize the Invar, you must expose it to a magnetic field that fluctuates back and forth and gradually diminishes to zero. The Invar's magnetization would also fluctuate back and forth and would dwindle to nothing by the time the demagnetizing field had vanished. Traditionally, this demagnetizing was done with a large wire coil that was powered by alternating current so that its magnetic field fluctuated back and forth. This coil was gradually moved away from the picture tube so that the influence of its magnetic field slowly diminished to zero, leaving the Invar completely demagnetized. In good computer monitors, this coil and an automatic power source for it are built in. When you push the degauss button, you see a burst of colors as the demagnetizing coil's fluctuating magnetic field erases the magnetization of the shadow mask and also steers the electrons wildly.

Apparently, degaussing circuitry has been built into all color televisions sets for the past 20 or 30 years. When you turn on your television, a demagnetizing coil activates briefly and removes minor magnetization from the television's invar mask.


Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy