How Everything Works
How Everything Works How Everything Works

Question 1143

Do the resonant frequencies of the elements change as the magnetic fields they reside in change? Can an element such as iron be made to resonate at the magnetic field strength of the earth? — JP, Blakeslee, PA
The terms "resonant" and "resonate" are general expressions that refer to repetitive motions or actions that occur spontaneously within a system. Elements exhibit many different resonant behaviors in different situations, so I must pick an appropriate resonant behavior in order to answer your question.

The best choice I can think of is nuclear magnetic resonance (NMR)—an effect that involves the flipping of an atomic nucleus's magnetic poles. Most atomic nuclei—the massive positively charged nuggets at the centers of atoms—are magnetic. When you put an atom with a magnetic nucleus in a magnetic field, the atom acquires a certain amount of potential energy that depends on whether that magnetic nucleus is aligned with the magnetic field or not. The extent to which the atom's nucleus is aligned with the field can be changed by exposing it to an electromagnetic wave of the right frequency. This electromagnetic wave provides or absorbs the required energy to allow the nucleus's magnetization to flip. The nucleus exhibits a resonance in response to the correct electromagnetic wave—a phenomenon called "nuclear magnetic resonance." This frequency at which this resonance occurs depends on the nucleus, on the magnetic field, and on the magnetic environment of the nucleus. The resonance occurs for any magnetic nucleus, in any field, but how interesting or useful the resonance is depends on the situation. So the answers to both questions are yes, but that doesn't mean the effects are important.


Copyright 1997-2017 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy