How Everything Works
How Everything Works How Everything Works

Question 102

Many large boats seem to taper down toward the water line. If their hulls follow this trend, their centers of mass will be high above their centers of buoyancy, making the boats unstable (like standing in a canoe). How do these things stay upright?
You're right that the boats must keep their centers of gravity lower than their centers of buoyancy. A boat with its center of gravity above its center of buoyancy will flip over, just as an upright broomstick will flip over if you support it only from below. But because a boat with a narrow tapered hull will go deeper into the water than one with a wide flat hull, the boat with the tapered hull may actually have a lower center of gravity than the boat with the wide flat hull. For example, imagine adding a long thin vertical plate to the bottom of a canoe, effectively converting the canoe's wide flat hull into a thin tapered hull. That canoe will be much more stable than before. So the shape of a boat's hull isn't as important as where the boat's weight located is relative to its center of buoyancy (the effective location of the buoyant force on the boat).

Copyright 1997-2018 © Louis A. Bloomfield, All Rights Reserved
Privacy Policy