Air Conditioners

Air Conditioners 2

Question

If you operate a window air conditioner on a table in the middle of a room, the average temperature in the room will

- 1. become colder
- 2. become hotter
- 3. stay the same

Air Conditioners 3

Observations About Air Conditioners

- They cool room air on hot days
- They emit hot air from their outside vents
- They consume lots of electric power
- They are less efficient on hotter days
- They can sometimes heat houses, too

Air Conditioners

Heat Machines

- · Air conditioners
 - use work to transfer heat from cold to hot
 - are a type of heat pump
- Automobiles
 - use flow of heat from hot to cold to do work
 - are a type of heat engine

Air Conditioners 5

Thermodynamics

- · Rules governing thermal energy flow
- Relationships between
 - thermal energy and mechanical work
 - disordered energy and ordered energy
- · Codified in four laws of thermodynamics

Air Conditioners 6

0th Law

Law about Thermal Equilibrium

"If two objects are in thermal equilibrium with a third object, then they are in thermal equilibrium with each other."

1st Law

Law about Conservation of Energy
"Change in internal energy equals heat in minus work out"

where:

Internal energy: thermal + stored energies Heat in: heat transferred into object Work out: external work done by object Air Conditioners 8

Order versus Disorder

- It is easy to convert ordered energy into thermal (disordered) energy
- It is hard to converting thermal energy into ordered energy
- Statistically, order to disorder is one-way

Air Conditioners 9

Entropy

- Entropy is measure of object's disorder
 Includes both thermal and structural disorders
- Isolated system's disorder never decreases
- But entropy can move or be transferred

Air Conditioners 10

2nd Law

Law about Disorder (Entropy)

"Entropy of a thermally isolated system never decreases"

Air Conditioners 11

3rd Law

Law about Entropy and Temperature

"An object's entropy approaches zero as
its temperature approaches absolute zero"

Air Conditioners 12

More on the 2nd Law

- According to the 2nd Law:
 - Entropy of a thermally isolated system can't decrease
 - But entropy can be redistributed within the system
 - Part of the system can become hotter while another part becomes colder!

Natural Heat Flow

- · Heat naturally flows from hot to cold
 - Removing heat from a hot object, ↓ entropy
 - Adding heat to a cold object, ↑ entropy
- Entropy of combined system increases
- 1 J of thermal energy is more disordering to a cold object than to a hot object

Air Conditioners 14

Unnatural Heat Flow

- · Heat can't naturally flow from cold to hot
 - Removing heat from cold object, ↓ entropy
 - Adding heat to hot object, ↑ entropy
 - More entropy removed than added
 - Energy is conserved, but ↓ total entropy
- To save 2nd law, we need more entropy
- Ordered energy must become disordered

Air Conditioners 15

Air conditioners, Part 1

- · Moves heat against its natural flow
 - Flows from cold room air to hot outside air
 - Converts ordered into disordered energy
 - Doesn't decrease the world's total entropy!
 - Uses fluid to transfer heat working fluid
 - Fluid absorbs heat from cool room air
 - Fluid releases heat to warm outside air

Air Conditioners

Air conditioners, Part 2

- Evaporator located in room air
 - transfers heat from room air to fluid
- Condenser located in outside air
- transfers heat from fluid to outside air
 Compressor located in outside air
 - does work on fluid and creates entropy

Air Conditioners 17

Evaporator, Part 1

- Heat exchanger made from long metal pipe
- · Fluid approaches evaporator
 - as a high pressure liquid near room temperature
- A constriction reduces the fluid's pressure
- Fluid enters evaporator
 - as a low pressure liquid near room temperature

Air Conditioners 18

Evaporator, Part 2

- Working fluid evaporates in the evaporator
 - Breaking bonds uses thermal energy
 - Fluid becomes colder gas
 - Heat flows from room air into fluid
- Fluid leaves evaporator
 - as a low pressure gas near room temperature
- Heat has left the room!

Compressor

- · Working fluid enters compressor
 - as a low pressure gas near room temperature
- · Compressor does work on fluid
 - Pushes gas inward as the gas moves inward
 - Gas temperature rises (first law)
 - Ordered energy becomes disordered energy
- Fluid leaves compressor
 - as hot, high pressure gas

Air Conditioners 20

Condenser, Part 1

- · Heat exchanger made from metal pipe
- · Fluid enters condenser
 - as a hot, high pressure gas
 - heat flows from fluid to outside air

Air Conditioners 2:

Condenser, Part 2

- Working Fluid condenses in condenser
 - forming bonds releases thermal energy
 - Fluid becomes hotter liquid
 - More heat flows from fluid into outside air
- Fluid leaves condenser
 - as high-pressure room-temperature liquid
- · Heat has reached the outside air!

Air Conditioners

Air conditioner Overview

- Evaporator located in room air
 - transfers heat from room air to fluid
- Compressor located in outside air
 - does work on fluid, so fluid gets hotter
- Condenser located in outside air
 - transfers heat from fluid to outside air,
 - including thermal energy extracted from inside air
 - and thermal energy added by compressor

Air Conditioners 23

Question

If you operate a window air conditioner on a table in the middle of a room, the average temperature in the room will

- 1. become colder
- 2. become hotter
- 3. stay the same

Air Conditioners 24

Summary About Air Conditioners

- They pump heat from cold to hot
- They don't violate thermodynamics
- They consume ordered energy
- They are most efficient for small temperature differences